Amplification par dérive de fréquencevignette|329x329px|Photographie d'un laser femtoseconde à amplification par dérive de fréquence (Laboratoire d'optique Appliquée). L'amplification à dérive de fréquence (CPA en anglais, pour en, chirp désignant le gazouillis d'oiseau, ce terme faisant l'analogie au chant de certains oiseaux qui font varier la fréquence de leur chant) est une technique d'amplification des impulsions laser ultracourtes jusqu'à des niveaux de puissance de l'ordre du pétawatt.
PhotonLe photon est le quantum d'énergie associé aux ondes électromagnétiques (allant des ondes radio aux rayons gamma en passant par la lumière visible), qui présente certaines caractéristiques de particule élémentaire. En théorie quantique des champs, le photon est la particule médiatrice de l’interaction électromagnétique. Autrement dit, lorsque deux particules chargées électriquement interagissent, cette interaction se traduit d’un point de vue quantique comme un échange de photons.
AttosecondAn attosecond (symbol as) is a unit of time in the International System of Units (SI) equal to 1×10−18 of a second (one quintillionth of a second). For comparison, an attosecond is to a second what a second is to about 31.71 billion years. The word "attosecond" is formed by the prefix atto and the unit second. Atto- was derived from the Danish word for eighteen (atten). Its symbol is as. An attosecond is equal to 1000 zeptoseconds, or of a femtosecond.
Microscopie par excitation à deux photonsvignette|350px|Microscopie par excitation à 2 photons de l'intestin d'une souris. Rouge: actine. Vert: noyaux des cellules. Bleu: mucus des cellules caliciformes. Obtenu à 780 nm avec un laser Ti-sapph. La microscopie par excitation à deux photons (M2P, TPEF ou 2PEF en anglais, aussi appelée « microscopie 2 photons ») est une technique d'imagerie optique combinant les principes de microscopie à fluorescence et de l'absorption à deux photons, faisant partie de la famille des microscopies multiphotons.
Laserthumb|250px|Lasers rouges (660 & ), verts (532 & ) et bleus (445 & ). thumb|250px|Rayon laser à travers un dispositif optique. thumb|250px|Démonstration de laser hélium-néon au laboratoire Kastler-Brossel à l'Université Pierre-et-Marie-Curie. Un laser (acronyme issu de l'anglais light amplification by stimulated emission of radiation qui signifie « amplification de la lumière par émission stimulée de radiation ») est un système photonique.
Bandwidth-limited pulseA bandwidth-limited pulse (also known as Fourier-transform-limited pulse, or more commonly, transform-limited pulse) is a pulse of a wave that has the minimum possible duration for a given spectral bandwidth. Bandwidth-limited pulses have a constant phase across all frequencies making up the pulse. Optical pulses of this type can be generated by mode-locked lasers. Any waveform can be disassembled into its spectral components by Fourier analysis or Fourier transformation.
Absorption (optique)L'absorption en optique, ou en électromagnétisme, désigne un processus physique par lequel l'énergie électromagnétique est transformée en une autre forme d'énergie. Au niveau des photons (quanta de lumière), l'absorption représente le phénomène par lequel l'énergie d'un photon est prise par une autre particule, par exemple un électron. Dans ce cas, si l'énergie du photon (, relation de Planck-Einstein) est égale à celle d'un état excité (ou à la différence entre deux états excités), celui-ci sera absorbé via une transition électronique d'un électron de valence.
Spectroscopie térahertz dans le domaine temporelvignette| Impulsion typique mesurée par THz-TDS. En physique, la spectroscopie TéraHertz dans le domaine temporel ( THz-TDS ) est une technique spectroscopique dans laquelle les propriétés de la matière sont sondées avec de courtes impulsions de rayonnement térahertz. Le schéma de génération et de détection est sensible à l'effet de l'échantillon sur l'amplitude et la phase du rayonnement térahertz. En mesurant dans le domaine temporel, la technique peut fournir plus d'informations que la spectroscopie à transformée de Fourier conventionnelle, qui n'est sensible qu'à l'amplitude.
Laser pumpingLaser pumping is the act of energy transfer from an external source into the gain medium of a laser. The energy is absorbed in the medium, producing excited states in its atoms. When the number of particles in one excited state exceeds the number of particles in the ground state or a less-excited state, population inversion is achieved. In this condition, the mechanism of stimulated emission can take place and the medium can act as a laser or an optical amplifier. The pump power must be higher than the lasing threshold of the laser.
Laser à colorantvignette|316x316px|Gros plan d'un laser à colorant CW de table à base de rhodamine 6G, émettant à 580 nm (jaune). Le faisceau laser émis est visible sous forme de lignes jaunes pâles entre la fenêtre jaune (au centre) et l'optique jaune (en haut à droite), où il se reflète à travers l'image vers un miroir invisible, et revient dans le jet de colorant depuis le coin inférieur gauche. La solution de colorant orange entre dans le laser par la gauche et sort par la droite, toujours brillante de phosphorescence triplet, et est pompée par un faisceau de 514 nm (bleu-vert) provenant d'un laser à argon.