HeuristiqueL'heuristique ou euristique (du grec ancien εὑρίσκω, heuriskô, « je trouve ») est en résolvant des problèmes à partir de connaissances incomplètes. Ce type d'analyse permet d'aboutir en un temps limité à des solutions acceptables. Celles-ci peuvent s'écarter de la solution optimale. Pour Daniel Kahneman, c'est une procédure qui aide à trouver des réponses adéquates, bien que souvent imparfaites à des questions difficiles. Ce système empirique inclut notamment la méthode essai-erreur ou l'analyse statistique des échantillons aléatoires.
Heuristique (mathématiques)Au sens le plus large, l'heuristique est la psychologie de la découverte, abordée par différents mathématiciens. En algorithmique, une heuristique est une méthode de calcul qui fournit rapidement une solution réalisable, pas nécessairement optimale ou exacte, pour un problème d'optimisation difficile. On distingue en général plusieurs temps la prise en compte du problème (question, contexte : données, contraintes, acteurs, tenants et aboutissants) l'incubation, recherche de solution, rumination parfois très longue ; la méthode du problème résolu peut ici dégager les conditions nécessaires à respecter.
Séparation et évaluationUn algorithme par séparation et évaluation, ou branch and bound en anglais, est une méthode générique de résolution de problèmes d'optimisation combinatoire. Cet algorithme a été introduit par Ailsa Land et Alison Harcourt (Doig) en 1960. L'optimisation combinatoire consiste à trouver un point minimisant une fonction, appelée coût, dans un ensemble dénombrable. Une méthode naïve pour résoudre ce problème est d'énumérer toutes les solutions du problème, de calculer le coût pour chacune, puis de donner le minimum.
Heuristique de jugementLes heuristiques de jugement, concept fréquemment employé dans le domaine de la cognition sociale, sont des opérations mentales automatiques, intuitives et rapides pouvant être statistiques ou non statistiques. Ces raccourcis cognitifs sont utilisés par les individus afin de simplifier leurs opérations mentales dans le but de répondre aux exigences de l’environnement. Par exemple, les gens ont tendance à estimer le temps mis pour trouver un emploi en fonction de la facilité avec laquelle ils peuvent penser à des individus qui ont récemment été engagés, et non selon le temps moyen de recherche dans la population.
Rationalité limitéeLa rationalité limitée (bounded rationality en version originale) est l'idée selon laquelle la capacité de décision d'un individu est altérée par un ensemble de contraintes comme le manque d'information, des biais cognitifs ou encore le manque de temps. Dans cette optique, les décideurs ont tendance à choisir des solutions satisfaisantes plutôt qu'optimales. Le concept a été initialement théorisé par Herbert Simon et utilisé en sociologie, en psychologie, en microéconomie ou encore en philosophie politique (par exemple chez Jon Elster).
Algorithme d'approximationEn informatique théorique, un algorithme d'approximation est une méthode permettant de calculer une solution approchée à un problème algorithmique d'optimisation. Plus précisément, c'est une heuristique garantissant à la qualité de la solution qui fournit un rapport inférieur (si l'on minimise) à une constante, par rapport à la qualité optimale d'une solution, pour toutes les instances possibles du problème.
Processus unifiéLe processus unifié (PU), ou « unified process (UP) » en anglais, ou « Unified Software Development Process (USDP) » est une famille de méthodes de développement de logiciels orientés objets. Elle se caractérise par une démarche itérative et incrémentale, pilotée par les cas d'utilisation, et centrée sur l'architecture et les modèles UML. Elle définit un processus intégrant toutes les activités de conception et de réalisation au sein de cycles de développement composés d'une phase de création, d'une phase d'élaboration, d'une phase de construction et d'une phase de transition, comprenant chacune plusieurs itérations.
Algorithme de rechercheEn informatique, un algorithme de recherche est un type d'algorithme qui, pour un domaine, un problème de ce domaine et des critères donnés, retourne en résultat un ensemble de solutions répondant au problème. Supposons que l'ensemble de ses entrées soit divisible en sous-ensemble, par rapport à un critère donné, qui peut être, par exemple, une relation d'ordre. De façon générale, un tel algorithme vérifie un certain nombre de ces entrées et retourne en sortie une ou plusieurs des entrées visées.
Representativeness heuristicThe representativeness heuristic is used when making judgments about the probability of an event under uncertainty. It is one of a group of heuristics (simple rules governing judgment or decision-making) proposed by psychologists Amos Tversky and Daniel Kahneman in the early 1970s as "the degree to which [an event] (i) is similar in essential characteristics to its parent population, and (ii) reflects the salient features of the process by which it is generated".
Partie bornéeEn mathématiques, la notion de partie bornée (ou, par raccourci, de borné) étend celle d'intervalle borné de réels à d'autres structures, notamment en topologie et en théorie des ordres. Selon les cas, la définition privilégie l'existence de bornes ponctuelles ou la négation de l'éloignement à l'infini. Une fonction bornée est une fonction dont l' est bornée dans l'ensemble d'arrivée. Un opérateur borné est un opérateur linéaire dont les images de bornés sont bornées également.