Graphe à distance héréditairevignette| Exemple d'un graphe à distance héréditaire. En théorie des graphes, un graphe à distance héréditaire (aussi appelé graphe complètement séparable) est un graphe dans lequel les distances entre sommets dans tout sous-graphe induit connexe sont les mêmes que celles du graphe tout entier ; autrement dit, tout sous-graphe induit hérite les distances du graphe entier. Les graphes à distance héréditaire ont été nommés et étudiés pour la première fois par Howorka en 1977, alors qu'une classe équivalente de graphes a déjà été considérée en 1970 par Olaru et Sachs qui ont montré que ce sont des graphes parfaits.
Multipartite graphIn graph theory, a part of mathematics, a k-partite graph is a graph whose vertices are (or can be) partitioned into k different independent sets. Equivalently, it is a graph that can be colored with k colors, so that no two endpoints of an edge have the same color. When k = 2 these are the bipartite graphs, and when k = 3 they are called the tripartite graphs. Bipartite graphs may be recognized in polynomial time but, for any k > 2 it is NP-complete, given an uncolored graph, to test whether it is k-partite.
Universal vertexIn graph theory, a universal vertex is a vertex of an undirected graph that is adjacent to all other vertices of the graph. It may also be called a dominating vertex, as it forms a one-element dominating set in the graph. (It is not to be confused with a universally quantified vertex in the logic of graphs.) A graph that contains a universal vertex may be called a cone. In this context, the universal vertex may also be called the apex of the cone.
Circle graphIn graph theory, a circle graph is the intersection graph of a chord diagram. That is, it is an undirected graph whose vertices can be associated with a finite system of chords of a circle such that two vertices are adjacent if and only if the corresponding chords cross each other. gives an O(n2)-time algorithm that tests whether a given n-vertex undirected graph is a circle graph and, if it is, constructs a set of chords that represents it. A number of other problems that are NP-complete on general graphs have polynomial time algorithms when restricted to circle graphs.
Échelle chromatiqueEn théorie de la musique, l’échelle chromatique, ou gamme chromatique, est une échelle musicale composée de douze degrés, séparés les uns des autres par un demi-ton. Par rapport à l’échelle diatonique, elle est constituée des sept degrés plus cinq notes intermédiaires, obtenues par altérations. L'échelle chromatique est ainsi composée de 12 demi-tons, contrairement à l'échelle diatonique qui associe tons et demi-tons.
Perfect graph theoremIn graph theory, the perfect graph theorem of states that an undirected graph is perfect if and only if its complement graph is also perfect. This result had been conjectured by , and it is sometimes called the weak perfect graph theorem to distinguish it from the strong perfect graph theorem characterizing perfect graphs by their forbidden induced subgraphs. A perfect graph is an undirected graph with the property that, in every one of its induced subgraphs, the size of the largest clique equals the minimum number of colors in a coloring of the subgraph.
Diatonic and chromaticDiatonic and chromatic are terms in music theory that are most often used to characterize scales, and are also applied to musical instruments, intervals, chords, notes, musical styles, and kinds of harmony. They are very often used as a pair, especially when applied to contrasting features of the common practice music of the period 1600–1900. These terms may mean different things in different contexts. Very often, diatonic refers to musical elements derived from the modes and transpositions of the "white note scale" C–D–E–F–G–A–B.
Modulation (musique)En harmonie tonale, une modulation désigne un changement de tonalité, sans interruption du discours musical. Celle-ci peut s'accompagner d'un ou de plusieurs changements de mode, mais pas obligatoirement. Elle peut ainsi désigner : un changement de tonique, un changement de mode et de tonique, le fragment musical qui évolue dans la nouvelle tonalité. C'est une des caractéristiques de la musique tonale que de pouvoir traverser successivement des tonalités différentes au cours d'un même morceau.
12-cage de TutteLa 12-cage de Tutte est, en théorie des graphes, un graphe 3-régulier possédant 126 sommets et 189 arêtes. Le diamètre de la 12-cage de Tutte, l'excentricité maximale de ses sommets, est 6, son rayon, l'excentricité minimale de ses sommets, est 6 et sa maille, la longueur de son plus court cycle, est 12. Il s'agit d'un graphe 3-sommet-connexe et d'un graphe 3-arête-connexe, c'est-à-dire qu'il est connexe et que pour le rendre déconnecté il faut le priver au minimum de 3 sommets ou de 3 arêtes.