Cohomologie des faisceauxLes groupes de cohomologie d'un faisceau de groupes abéliens sont les groupes de cohomologie du complexe de cochaines. Les groupes de cohomologie d'un faisceau de groupes abéliens sont les groupes de cohomologie du complexe de cochaines : où est une résolution injective du faisceau , et désigne le groupe abélien des sections globales de . A unique isomorphisme canonique près, ces groupes ne dépendent pas de la résolution injective choisie. Le zéroième groupe est canoniquement isomorphe à .
Théorie des singularitésvignette|droite|Visualisation de la fonction (x, y) → x2 + y2 Dans l'acception que lui a donnée René Thom, la théorie des singularités consiste à étudier des objets et des familles d'objets suivant leur degré de généricité. Dans une famille, l'objet peut subir des changements d'états ce que l'on appelle une bifurcation. Un exemple simple est donné par les courbes de niveau de la fonction : La courbe de niveau pour une valeur positive est un cercle. La valeur 0 est singulière et pour les valeurs négatives, la courbe est vide.
Courbe pseudoholomorpheEn topologie et en géométrie, une courbe pseudoholomorphe est une application d'une surface de Riemann, éventuellement à bord, dans une variété presque complexe satisfaisant les équations de Cauchy-Riemann. La régularité est imposée par la régularité de la structure presque complexe utilisée. Introduites en 1985 par Mikhaïl Gromov, elles jouent un rôle central en géométrie symplectique, et interviennent en particulier dans la définition de l'homologie de Floer.
OrbifoldEn mathématiques, un orbifold (parfois appelé aussi orbivariété) est une généralisation de la notion de variété contenant de possibles singularités. Ces espaces ont été introduits explicitement pour la première fois par Ichirō Satake en 1956 sous le nom de V-manifolds. Pour passer de la notion de variété (différentiable) à celle d'orbifold, on ajoute comme modèles locaux tous les quotients d'ouverts de par l'action de groupes finis. L'intérêt pour ces objets a été ravivé considérablement à la fin des années 70 par William Thurston en relation avec sa conjecture de géométrisation.
SupermanifoldIn physics and mathematics, supermanifolds are generalizations of the manifold concept based on ideas coming from supersymmetry. Several definitions are in use, some of which are described below. An informal definition is commonly used in physics textbooks and introductory lectures. It defines a supermanifold as a manifold with both bosonic and fermionic coordinates. Locally, it is composed of coordinate charts that make it look like a "flat", "Euclidean" superspace.
Lie groupoidIn mathematics, a Lie groupoid is a groupoid where the set of s and the set of morphisms are both manifolds, all the operations (source and target, composition, identity-assigning map and inversion) are smooth, and the source and target operations are submersions. A Lie groupoid can thus be thought of as a "many-object generalization" of a Lie group, just as a groupoid is a many-object generalization of a group. Accordingly, while Lie groups provide a natural model for (classical) continuous symmetries, Lie groupoids are often used as model for (and arise from) generalised, point-dependent symmetries.
Application momentEn géométrie symplectique, aux actions hamiltoniennes d'un groupe de Lie sur une variété symplectique est associée une application G-équivariante , appelée l'application moment. En un certain sens, elle généralise le moment rencontré en mécanique classique. L'application moment est définie par : où est le champ de vecteurs correspondant à l'action infinitésimale de . Action de groupe Action hamiltonienne Symplectomorphisme Difféomorphisme hamiltonien Contribution à l'étude de l'application moment, EL AZIRI Abdelhamid ; MARLE Charles-Miche Convexity properties of hamiltonian group actions, Principal Guillemin, Victor W.
Libre arbitreLe libre arbitre, parfois orthographié libre-arbitre, est la faculté qu’aurait l'être humain de se déterminer librement et par lui seul, à agir et à penser, par opposition au déterminisme ou au fatalisme, qui affirment que la volonté serait déterminée dans chacun de ses actes par des « forces » qui l’y obligent. « Se déterminer à » ou « être déterminé par » illustrent l’enjeu de l’antinomie du libre arbitre d'un côté et du destin ou de la « nécessité » de l'autre.
Navette spatialevignette|Décollage de la navette Columbia pour la mission STS-1 le 12 avril 1981, la première mission amenant des hommes dans l'espace depuis une navette. Une navette spatiale, dans le domaine de l’astronautique, désigne conventionnellement un véhicule spatial pouvant revenir sur Terre en effectuant un atterrissage contrôlé à la manière d'un avion ou d'un planeur et pouvant être réutilisé pour une mission ultérieure.
FeuilletageEn mathématiques, et plus précisément en géométrie différentielle, on dit qu'une variété est feuilletée, ou munie d'un feuilletage, si elle se décompose en sous-variétés de même dimension, appelées feuilles, qui localement, s'empilent comme les sous-espaces R × R. Formellement, un feuilletage sur est un atlas feuilleté, autrement dit une famille de cartes locales , où , et les changements de carte préservent cette décomposition : pour tout , . thumb|Schéma de changement de carte feuilletée.