Résumé
En mathématiques, un orbifold (parfois appelé aussi orbivariété) est une généralisation de la notion de variété contenant de possibles singularités. Ces espaces ont été introduits explicitement pour la première fois par Ichirō Satake en 1956 sous le nom de V-manifolds. Pour passer de la notion de variété (différentiable) à celle d'orbifold, on ajoute comme modèles locaux tous les quotients d'ouverts de par l'action de groupes finis. L'intérêt pour ces objets a été ravivé considérablement à la fin des années 70 par William Thurston en relation avec sa conjecture de géométrisation. En physique, ces espaces ont été considérés initialement comme espaces de compactification en théorie des cordes car malgré la présence de singularités la théorie y est bien définie. Lorsqu'ils sont utilisés dans le cadre plus particulier de la théorie des supercordes, les orbifolds autorisés doivent avoir la propriété supplémentaire d'être des variétés de Calabi-Yau afin de préserver une quantité minimale de supersymétrie. Mais dans le cas où des singularités sont présentes, il s'agit là d'une extension de la définition originale des espaces de Calabi-Yau car ceux-ci sont en principe des espaces sans singularité. De même qu'une variété, un orbifold est spécifié par des données de recollement entre des modèles locaux ; cependant, au lieu que ces modèles locaux soient des ouverts de Rn, ce sont des quotients de tels ouverts par des actions de groupes finis. Les données de recollement décrivent non seulement la structure de l'espace quotient, qui n'est pas nécessairement une variété, mais aussi celle des sous-groupes d'isotropie. Un atlas d'orbifold de dimension n est la donnée simultanée : d'un espace de Hausdorff , appelé l'espace sous-jacent, d'un recouvrement ouvert (Ui) de , clos par intersections finies pour chaque indice , d'une carte constituée (outre Ui) d'un ouvert de d'une action fidèle linéaire d'un groupe fini sur d'un homéomorphisme (on notera l'application composée) tels que pour toute inclusion Ui Uj il existe un morphisme de groupes injectif fij : Γi Γj et un homéomorphisme ψij de dans un ouvert de , appelé application de recollement, Γi-équivariante (relativement à fij) compatible avec les cartes (i.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.