Inhibiteur de protéaseLes inhibiteurs de protéases (IP) inhibent une ou généralement plusieurs protéases voisines . Pour les applications pharmacologiques, les IP, appelés communément antiprotéases, constituent la seconde classe d'agents antirétroviraux à avoir été développée jusqu'au stade clinique (à commencer contre le VIH et le VHC). La première autorisation de mise sur le marché date de fin 1995. Elle a constitué un tournant majeur dans les stratégies thérapeutiques contre le VIH.
SerpineLes serpines (de l'anglais serpin, mot-valise pour ine rotease hibitor) sont des protéines aux structures semblables, connues historiquement pour leur capacité à inhiber les protéases à sérine. Elles forment une superfamille de protéines présente à travers tous les règnes du vivant. Elles doivent leur nom au fait que les premières à avoir été identifiées inhibent les protéases à sérine de type chymotrypsine. Elles sont remarquables par leur mécanisme d'action, qui consiste à inhiber leur peptidase cible en subissant un changement conformationnel de grande amplitude qui fait disparaître le site actif.
PeptidaseLes peptidases (ou protéases ou enzymes protéolytiques) sont des enzymes qui brisent les liaisons peptidiques des protéines. On parle alors de coupure protéolytique ou de protéolyse. Ce processus implique l'utilisation d'une molécule d'eau ce qui les classe parmi les hydrolases. Les fonctions biologiques des protéases sont variées : elles interviennent dans la maturation des protéines, dans la digestion des aliments, dans la coagulation sanguine, dans le remodelage des tissus au cours du développement de l'organisme et dans la cicatrisation.
Triade catalytiqueredresse=1.5|vignette| Site actif de la protéase TEV (), une peptidase très sélective du virus de la gravure du tabac, montrant le substrat en noir et les résidus de la triade catalytique en rouge, ici l'aspartate (acide), l'histidine (base) et la cystéine (nucléophile). En biologie moléculaire, on désigne généralement par triade catalytique les trois résidus d'acides aminés qui interviennent ensemble dans le site actif de certaines hydrolases et transférases telles que des peptidases, des amidases, des estérases, des lipases et des β-lactamases.
Mécanique moléculairevignette|Physique à l'échelle moléculaire La mécanique moléculaire correspond à l'utilisation de la mécanique newtonienne pour modéliser la structure des systèmes moléculaires. L'approche de la mécanique moléculaire est souvent appliquée pour améliorer des structures moléculaires ou des simulations utilisant soit la dynamique moléculaire, soit la méthode de Monte-Carlo. Typiquement, la mécanique moléculaire considère l'ensemble des interactions entre une collection d'atomes sphériques reliés entre eux par des ressorts fictifs qui représentent les liaisons chimiques.
Champ de force (chimie)vignette|Un champ de force peut par exemple être utilisé afin de minimiser l'énergie d'étirement de cette molécule d'éthane. Dans le cadre de la mécanique moléculaire, un champ de force est un ensemble de potentiels et de paramètres permettant de décrire la structure de l'énergie potentielle d'un système de particules (typiquement, des atomes, mais non exclusivement). L'usage de l'expression champ de force en chimie et biologie numériques diffère ainsi de celui de la physique, où il indique en général un gradient négatif d'un potentiel scalaire.
Kunitz domainKunitz domains are the active domains of proteins that inhibit the function of protein degrading enzymes or, more specifically, domains of Kunitz-type are protease inhibitors. They are relatively small with a length of about 50 to 60 amino acids and a molecular weight of 6 kDa. Examples of Kunitz-type protease inhibitors are aprotinin (bovine pancreatic trypsin inhibitor, BPTI), Alzheimer's amyloid precursor protein (APP), and tissue factor pathway inhibitor (TFPI).
Dynamique moléculaireLa dynamique moléculaire est une technique de simulation numérique permettant de modéliser l'évolution d'un système de particules au cours du temps. Elle est particulièrement utilisée en sciences des matériaux et pour l'étude des molécules organiques, des protéines, de la matière molle et des macromolécules. En pratique, la dynamique moléculaire consiste à simuler le mouvement d'un ensemble de quelques dizaines à quelques milliers de particules dans un certain environnement (température, pression, champ électromagnétique, conditions aux limites.
Domaine protéiqueredresse=1.15|vignette|Exemples de structures de protéines organisées en domaines distincts. Le domaine de couleur brique, appelé domaine PH, est commun aux deux protéines,. Sa fonction est de fixer le phosphatidylinositol-3,4,5-trisphosphate (PIP3) Un domaine protéique est une partie d'une protéine capable d'adopter une structure de manière autonome ou partiellement autonome du reste de la molécule. C'est un élément modulaire de la structure des protéines qui peuvent ainsi être composées de l'assemblage de plusieurs de ces domaines.
Modélisation moléculairethumb|Animation d'un modèle compact d'ADN en forme B|327x327px|alt=Modèle de l'ADN en forme B La modélisation moléculaire est un ensemble de techniques pour modéliser ou simuler le comportement de molécules. Elle est utilisée pour reconstruire la structure tridimensionnelle de molécules, en particulier en biologie structurale, à partir de données expérimentales comme la cristallographie aux rayons X. Elle permet aussi de simuler le comportement dynamique des molécules et leur mouvements internes.