Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The magnetic behavior of SmN has been investigated in stoichiometric polycrystalline films. All samples show ferromagnetic order with Curie temperature (T-C) of 27 3 K, evidenced by the occurrence of hysteresis below T-C. The ferromagnetic state is characterized by a very small moment and a large coercive field, exceeding even the maximum applied field of 6 T below about 15 K. The residual magnetization at 2 K, measured after cooling in the maximum field, is 0.035 mu(B) per Sm. Such a remarkably small moment results from a near cancellation of the spin and orbital contributions for Sm+3 in SmN. Coupling to an applied field is therefore weak, explaining the huge coercive field. The susceptibility in the paramagnetic phase shows temperature-independent Van Vleck and Curie-Weiss contributions. The Van Vleck contribution is in quantitative agreement with the field-induced admixture of the J = 7/2 excited state and the 2 ground state. The Curie-Weiss contribution returns a Curie temperature that agrees with the onset of ferromagnetic hysteresis, and a conventional paramagnetic moment with an effective moment of 0.4 mu B per Sm ion, in agreement with expectations for the crystal-field modified effective moment on the Sm+3 ions.