Diffusion de la matièreLa diffusion de la matière, ou diffusion chimique, désigne la tendance naturelle d'un système à rendre uniforme le potentiel chimique de chacune des espèces chimiques qu'il comporte. La diffusion chimique est un phénomène de transport irréversible qui tend à homogénéiser la composition du milieu. Dans le cas d'un mélange binaire et en l'absence des gradients de température et de pression, la diffusion se fait des régions de plus forte concentration vers les régions de concentration moindre.
Interaction protéine-protéinethumb|upright=1.2|L'inhibiteur de la ribonucléase en forme de fer à cheval (en représentation « fil de fer ») forme une interaction protéine–protéine avec la protéine de la ribonucléase. Les contacts entre les deux protéines sont représentés sous forme de taches colorées. Une Interaction protéine–protéine apparait lorsque deux ou plusieurs protéines se lient entre elles, le plus souvent pour mener à bien leur fonction biologique.
ReproductibilitéLa reproductibilité d'une expérience scientifique est une des conditions qui permettent d'inclure les observations réalisées durant cette expérience dans le processus d'amélioration perpétuelle des connaissances scientifiques. Cette condition part du principe qu'on ne peut tirer de conclusions que d'un événement bien décrit, qui est apparu plusieurs fois, provoqué par des personnes différentes. Cette condition permet de s'affranchir d'effets aléatoires venant fausser les résultats ainsi que des erreurs de jugement ou des manipulations de la part des scientifiques.
Fond diffus cosmologiqueLe fond diffus cosmologique (FDC, ou CMB pour l'anglais cosmic microwave background, « fond cosmique de micro-ondes ») est un rayonnement électromagnétique très homogène observé dans toutes les directions du ciel et dont le pic d'émission est situé dans le domaine des micro-ondes. On le qualifie de diffus parce qu'il ne provient pas d'une ou plusieurs sources localisées, et de cosmologique parce que, selon l'interprétation qu'on en fait, il est présent dans tout l'Univers (le cosmos).
Nonlinear dimensionality reductionNonlinear dimensionality reduction, also known as manifold learning, refers to various related techniques that aim to project high-dimensional data onto lower-dimensional latent manifolds, with the goal of either visualizing the data in the low-dimensional space, or learning the mapping (either from the high-dimensional space to the low-dimensional embedding or vice versa) itself. The techniques described below can be understood as generalizations of linear decomposition methods used for dimensionality reduction, such as singular value decomposition and principal component analysis.