Bayesian Inference for Sparse Generalized Linear Models
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We address the mining of sequential activity patterns from document logs given as word-time occurrences. We achieve this using topics that models both the cooccurrence and the temporal order in which words occur within a temporal window. Discovering such t ...
We address the mining of sequential activity patterns from document logs given as word-time occurrences. We achieve this using topics that models both the cooccurrence and the temporal order in which words occur within a temporal window. Discovering such t ...
The thesis is a contribution to extreme-value statistics, more precisely to the estimation of clustering characteristics of extreme values. One summary measure of the tendency to form groups is the inverse average cluster size. In extreme-value context, th ...
We consider the problem of positioning estimation with impulse radio (IR) ultra-wideband (UWB) radio under dense multipaths and additive Gaussian noise environments. Most popular positioning algorithms first estimate certain parameters (such as time of arr ...
We consider the problem of ranging with Impulse Radio (IR) Ultra-WideBand (UWB) radio under weak Line Of Sight (LOS) environments and additive Gaussian noise. We use a Bayesian approach where the prior distribution of the channel follows the IEEE 802.15.4a ...
A wide range of problems such as signal reconstruction, denoising, source separation, feature selection, and graphical model search are addressed today by posterior maximization for linear models with sparsity-favouring prior distributions. The Bayesian po ...
In this thesis, we focus on Impulse Radio (IR) Ultra-WideBand (UWB) ranging and positioning techniques under indoor propagation environments. IR-UWB, a new carrierless communication scheme using impulses, is a candidate technology for future communication, ...
Two-component mixture distributions with one component a point mass and the other a continuous density may be used as priors for Bayesian inference when sparse representation of an underlying signal is required. We show how saddlepoint approximation in suc ...
In this study, we evaluate eight autoconversion parameterizations against integration of the Kinetic Collection Equation (KCE) for cloud size distributions measured during the NASA CRYSTAL-FACE and CSTRIPE campaigns. KCE calculations are done using both th ...
The theory of Compressive Sensing (CS) exploits a well-known concept used in signal compression – sparsity – to design new, efficient techniques for signal acquisition. CS theory states that for a length-N signal x with sparsity level K, M = O(K log(N/K)) ...