Bayesian Inference for Sparse Generalized Linear Models
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The thesis is a contribution to extreme-value statistics, more precisely to the estimation of clustering characteristics of extreme values. One summary measure of the tendency to form groups is the inverse average cluster size. In extreme-value context, th ...
We consider the problem of positioning estimation with impulse radio (IR) ultra-wideband (UWB) radio under dense multipaths and additive Gaussian noise environments. Most popular positioning algorithms first estimate certain parameters (such as time of arr ...
We consider the problem of ranging with Impulse Radio (IR) Ultra-WideBand (UWB) radio under weak Line Of Sight (LOS) environments and additive Gaussian noise. We use a Bayesian approach where the prior distribution of the channel follows the IEEE 802.15.4a ...
A wide range of problems such as signal reconstruction, denoising, source separation, feature selection, and graphical model search are addressed today by posterior maximization for linear models with sparsity-favouring prior distributions. The Bayesian po ...
Two-component mixture distributions with one component a point mass and the other a continuous density may be used as priors for Bayesian inference when sparse representation of an underlying signal is required. We show how saddlepoint approximation in suc ...
In this thesis, we focus on Impulse Radio (IR) Ultra-WideBand (UWB) ranging and positioning techniques under indoor propagation environments. IR-UWB, a new carrierless communication scheme using impulses, is a candidate technology for future communication, ...
We address the mining of sequential activity patterns from document logs given as word-time occurrences. We achieve this using topics that models both the cooccurrence and the temporal order in which words occur within a temporal window. Discovering such t ...
We address the mining of sequential activity patterns from document logs given as word-time occurrences. We achieve this using topics that models both the cooccurrence and the temporal order in which words occur within a temporal window. Discovering such t ...
The theory of Compressive Sensing (CS) exploits a well-known concept used in signal compression – sparsity – to design new, efficient techniques for signal acquisition. CS theory states that for a length-N signal x with sparsity level K, M = O(K log(N/K)) ...
In this study, we evaluate eight autoconversion parameterizations against integration of the Kinetic Collection Equation (KCE) for cloud size distributions measured during the NASA CRYSTAL-FACE and CSTRIPE campaigns. KCE calculations are done using both th ...