Fast Sparse Gaussian Process Methods: The Informative Vector Machine
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We introduce a new rounding technique designed for online optimization problems, which is related to contention resolution schemes, a technique initially introduced in the context of submodular function maximization. Our rounding technique, which we call o ...
Learning from Demonstration permits non-expert users to easily and intuitively reprogram robots. Among approaches embracing this paradigm, probabilistic movement primitives (ProMPs) are a well-established and widely used method to learn trajectory distribu ...
Data-driven approaches based on high-throughput capabilities and machine learning hold promise in revolutionizing human-centred materials discovery for sustainability and decarbonization. This Review examines the strengths and limitations of different trad ...
Informative sample selection in an active learning (AL) setting helps a machine learning system attain optimum performance with minimum labeled samples, thus reducing annotation costs and boosting performance of computer-aided diagnosis systems in the pres ...
Advances in computing have enabled widespread access to pose estimation, creating new sources of data streams. Unlike mock set-ups for data collection, tapping into these data streams through on-device active learning allows us to directly sample from the ...
Aging civil infrastructures are closely monitored by engineers for damage and critical defects. As the manual inspection of such large structures is costly and time-consuming, we are working towards fully automating the visual inspections to support the pr ...
Modern machine learning methods and their applications in computer vision are known to crave for large amounts of training data to reach their full potential. Because training data is mostly obtained through humans who manually label samples, it induces a ...
The paper presents ICAP (interactive, constructive, active and passive) as the theoretical framework to understand the role of informal learning spaces as an active learning tool when students have informal meetings to work on projects. Students in our En ...
Training robust deep learning (DL) systems for disease detection from medical images is challenging due to limited images covering different disease types and severity. The problem is especially acute, where there is a severe class imbalance. We propose an ...
Detection of curvilinear structures has long been of interest due to its wide range of applications. Large amounts of imaging data could be readily used in many fields, but it is practically not possible to analyze them manually. Hence, the need for automa ...