Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The anticancer ruthenium-arene compd. [Ru(η6-C6H5CF3)(pta)Cl2] (pta = 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane), termed RAPTA-CF3, with the electron-withdrawing α,α,α-trifluorotoluene ligand, is one of the most cytotoxic RAPTA compds. known. To rationalize the high obsd. cytotoxicity, the hydrolysis of RAPTA-CF3 in water and brine (100 mM sodium chloride) and its reactions with the protein ubiquitin and a double-stranded oligonucleotide (5'-GTATTGGCACGTA-3') were studied using NMR spectroscopy, high-resoln. Fourier transform ion cyclotron resonance mass spectrometry, and gel electrophoresis. The aquation of the ruthenium-chlorido complex was accompanied by a loss of the arene ligand, independent of the chloride concn., which is a special property of the compd. not obsd. for other ruthenium-arene complexes with relatively stable ruthenium-arene bonds. Accordingly, the mass spectra of the biomol. reaction mixts. contained mostly [Ru(pta)]-biomol. adducts, whereas [Ru(pta)(arene)] adducts typical of other RAPTA compds. were not obsd. in the protein or DNA binding studies. Gel electrophoresis expts. revealed a significant degree of decompn. of the oligonucleotide, which was more pronounced in the case of RAPTA-CF3 compared with RAPTA-C. Consequently, facile arene loss appears to be responsible for the increased cytotoxicity of RAPTA-CF3. Graphical abstr.: RAPTA-CF3 is a fast-acting cytotoxic compd. that degrades DNA and has a mode of action fundamentally different from that of other ruthenium(II)-arene compds.
Paul Joseph Dyson, Farzaneh Fadaei Tirani, Mouna Hadiji
Paul Joseph Dyson, Sarah Alexandra Pais Pereira