Information Processing and Structure of Dynamical Networks
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Goods can exhibit positive externalities impacting decisions of customers in social networks. Suppliers can integrate these externalities in their pricing strategies to increase their revenue. Besides optimizing the prize, suppliers also have to consider t ...
Advances in scanning systems have enabled the digitization of pathology slides into Whole-Slide Images (WSIs), opening up opportunities to develop Computational Pathology (CompPath) methods for computer-aided cancer diagnosis and prognosis. CompPath has be ...
We consider model-based multi-agent reinforcement learning, where the environment transition model is unknown and can only be learned via expensive interactions with the environment. We propose H-MARL (Hallucinated Multi-Agent Reinforcement Learning), a no ...
Spectral-based graph neural networks (SGNNs) have been attracting increasing attention in graph representation learning. However, existing SGNNs are limited in implementing graph filters with rigid transforms and cannot adapt to signals residing on graphs ...
The field of computational topology has developed many powerful tools to describe the shape of data, offering an alternative point of view from classical statistics. This results in a variety of complex structures that are not always directly amenable for ...
Dynamical Systems (DS) are fundamental to the modeling and understanding time evolving phenomena, and have application in physics, biology and control. As determining an analytical description of the dynamics is often difficult, data-driven approaches are ...
Dimension is a fundamental property of objects and the space in which they are embedded. Yet ideal notions of dimension, as in Euclidean spaces, do not always translate to physical spaces, which can be constrained by boundaries and distorted by inhomogenei ...
Graph neural networks (GNN) are very popular methods in machine learning and have been applied very successfully to the prediction of the properties of molecules and materials. First-order GNNs are well known to be incomplete, i.e. there exist graphs that ...
The increasing prevalence of personal devices motivates the design of algorithms that can leverage their computing power, together with the data they generate, in order to build privacy-preserving and effective machine learning models. However, traditional ...
Understanding epidemic propagation in large networks is an important but challenging task, especially since we usually lack information, and the information that we have is often counter-intuitive. An illustrative example is the dependence of the final siz ...