Dépôt chimique en phase vapeurvignette|Schéma d'un CVD Le dépôt chimique en phase vapeur (ou CVD pour l'anglais chemical vapor deposition) est une méthode de dépôt sous vide de films minces, à partir de précurseurs gazeux. La CVD est un procédé utilisé pour produire des matériaux solides de haute performance, et de grande pureté. Ce procédé est souvent utilisé dans l'industrie du semi-conducteur pour produire des couches minces. Dans un procédé CVD typique, le substrat est exposé à un ou plusieurs précurseurs en phase gazeuse, qui réagissent et/ou se décomposent à la surface du substrat pour générer le dépôt désiré.
Dépôt chimique en phase vapeur assisté par plasmathumb|Équipement de PECVD. Le dépôt chimique en phase vapeur assisté par plasma (ou PECVD, pour Plasma-Enhanced Chemical Vapor Deposition en anglais) est un procédé utilisé pour déposer des couches minces sur un substrat à partir d'un état gazeux (vapeur). Des réactions chimiques se déroulent au cours du processus après la formation d'un plasma à partir des gaz du réacteur. Le plasma est généralement créé à partir de ce gaz par une décharge électrique pouvant être générée à partir de sources radio-fréquences (13,56 MHz), micro-ondes (2,45 GHz) ou par une décharge électrique continue entre deux électrodes.
Dépôt sous videvignette|Chambre à vide de l'Observatoire du Mont Mégantic utilisée pour la re-aluminisation des miroirs de télescopes. Le dépôt sous vide est une technique de fabrication de couche mince : on cherche à déposer une couche de métal (la plupart du temps) sur une lame de substrat solide (verre ou silicium par exemple). On y utilise le principe physique qui veut que, à très basse pression, les molécules (généralement monoatomiques) de vapeur d'un métal se déplacent avec très peu de risque de collision avec d'autres molécules : le gaz métallique se trouve projeté sur le substrat sans être freiné par les phénomènes de diffusion, et sans risque d'oxydation.
Dépôt physique par phase vapeurvignette|Montage expérimental d’une évaporation par dépôt chimique vapeur Le dépôt physique en phase vapeur (ou PVD pour l'anglais physical vapor deposition) est un ensemble de méthodes de dépôt sous vide de films minces : Évaporation directe : Évaporation sous vide (ou évaporation) Évaporation par faisceau d'électron en phase vapeur (angl. electron beam evaporation) Pulvérisation cathodique (sputtering) : les particules de métal sont séparées de leur substrat par bombardement ionique.
Electron beam physical vapor depositionvignette|Evaporateur métallique « E-gun » utilisé au centre de recherche « Thales Research & Technology » du milieu des années 80 jusqu’en 2004 pour l’évaporation des sandwichs métalliques de contact ohmique et de grille. L’évaporation par faisceau d’électrons (aussi évaporation par faisceau électronique ; en anglais : Electron-beam physical vapor deposition / EBPVD, aussi simplement electron-beam evaporation) est une forme de dépôt physique en phase gazeuse, plus spécifiquement d’évaporation sous vide, dans laquelle une anode cible sous vide poussé est bombardée par un faisceau d’électrons émis par un canon à électrons.
Nitrure de boreLe nitrure de bore est un composé chimique de formule BN. C'est une céramique réfractaire ultradure et semiconductrice. Il est isoélectronique avec le carbone et, comme ce dernier, existe sous plusieurs polymorphes, les plus courants étant le nitrure de bore hexagonal, noté h-BN, analogue au graphite, et le nitrure de bore cubique, noté c-BN, analogue au diamant. Le premier est utilisé comme lubrifiant ainsi que dans certains produits cosmétiques, tandis que le second, qui présente une structure cristalline de type sphalérite, est un peu moins dur que le diamant mais avec une meilleure stabilité chimique et thermique .
Couche minceUne couche mince () est un revêtement dont l’épaisseur peut varier de quelques couches atomiques à une dizaine de micromètres. Ces revêtements modifient les propriétés du substrat sur lesquels ils sont déposés. Ils sont principalement utilisés : dans la fabrication de composants électroniques telles des cellules photovoltaïques en raison de leurs propriétés isolantes ou conductrices ; pour la protection d'objets afin d'améliorer les propriétés mécaniques, de résistance à l’usure, à la corrosion ou en servant de barrière thermique.
Ablation laserL'ablation laser est une technique utilisée pour la production de nanoparticules, certaines méthodes d'analyses de matériaux et/ou pour produire un dépôt en couche mince atomique. L' ablation laser complète ici la gamme des méthodes de dépôt physique de couches minces, telles l'évaporation, la pulvérisation cathodique ou le procédé sol-gel. Un faisceau laser pulsé est focalisé sur une cible constituée du matériau à déposer. L'interaction cible-faisceau entraîne l'arrachage de la matière constituant la cible, par pulvérisation, évaporation, voire fracturation mécanique.
SiliciumLe silicium est l'élément chimique de numéro atomique 14, de symbole Si. Ce métalloïde tétravalent appartient au groupe 14 du tableau périodique. C'est l'élément le plus abondant dans la croûte terrestre après l'oxygène, soit 25,7 % de sa masse, mais il n'est comparativement présent qu'en relativement faible quantité dans la matière constituant le vivant.
Diode laserUne diode laser est un composant opto-électronique à base de matériaux semi-conducteurs. Elle émet de la lumière monochromatique cohérente (une puissance optique) destinée, entre autres, à transporter un signal contenant des informations sur de longues distances (dans le cas d'un système de télécommunications) ou à apporter de l'énergie lumineuse pour le pompage de certains lasers (lasers à fibre, laser DPSS) et amplificateurs optiques (OFA, Optical Fiber Amplifier).