Large Scale Bayesian Inference and Experimental Design for Sparse Linear Models
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Demand has emerged for next generation visual technologies that go beyond conventional 2D imaging. Such technologies should capture and communicate all perceptually relevant three-dimensional information about an environment to a distant observer, providin ...
Over the past few decades we have been experiencing a data explosion; massive amounts of data are increasingly collected and multimedia databases, such as YouTube and Flickr, are rapidly expanding. At the same time rapid technological advancements in mobil ...
A wide range of problems such as signal reconstruction, denoising, source separation, feature selection, and graphical model search are addressed today by posterior maximization for linear models with sparsity-favouring prior distributions. The Bayesian po ...
The theory of Compressed Sensing (CS) is based on reconstructing sparse signals from random linear measurements. As measurement of continuous signals by digital devices always involves some form of quantization, in practice devices based on CS encoding mus ...
We present an analytical form of ground-truth k-space data for the 2-D Shepp-Logan brain phantom in the presence of multiple and non-homogeneous receiving coils. The analytical form allows us to conduct realistic simulations and validations of reconstructi ...
We consider the task of recovering correlated vectors at a central decoder based on fixed linear measurements obtained by distributed sensors. A general formulation of the problem is proposed, under both a universal and an almost sure reconstruction requir ...
The theory of Compressed Sensing (CS) is based on reconstructing sparse signals from random linear measurements. As measurement of continuous signals by digital devices always involves some form of quantization, in practice devices based on CS encoding mus ...
This paper exploits recent developments in sparse approximation and compressive sensing to efficiently perform localization in a sensor network. We introduce a Bayesian framework for the localization problem and provide sparse approximations to its optimal ...
We present a numerical framework for Fluorescence Diffuse Optical Tomography (fDOT) that combines a forward model together with an iterative reconstruction procedure. Using rapid linear solvers, we derived an efficient reconstruction strategy for quadratic ...
Ieee Service Center, 445 Hoes Lane, Po Box 1331, Piscataway, Nj 08855-1331 Usa2009
We present a numerical framework for Fluorescence Diffuse Optical Tomography (fDOT) that combines a forward model together with an iterative reconstruction procedure. Using rapid linear solvers, we derived an efficient reconstruction strategy for quadrati ...