Large Scale Bayesian Inference and Experimental Design for Sparse Linear Models
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We study combinatorial group testing schemes for learning d-sparse boolean vectors using highly unreliable disjunctive measurements. We consider an adversarial noise model that only limits the number of false observations, and show that any noise-resilie ...
We present a framework for efficient, accurate approximate Bayesian inference in generalized linear models (GLMs), based on the expectation propagation (EP) technique. The parameters can be endowed with a factorizing prior distribution, encoding properties ...
Compressive sensing (CS) is an emerging field that provides a framework for image recovery using sub-Nyquist sampling rates. The CS theory shows that a signal can be reconstructed from a small set of random projections, provided that the signal is sparse i ...
A major limitation of thermal therapies is the lack of detailed thermal information needed to monitor the therapy. Temperatures are routinely measured invasively with thermocouples, but only sparse measurements can be made. Ultrasound tomography is an attr ...
Generalized linear models are the most commonly used tools to describe the stimulus selectivity of sensory neurons. Here we present a Bayesian treatment of such models. Using the expectation propagation algorithm, we are able to approximate the full poster ...
The linear model with sparsity-favouring prior on the coefficients has important applications in many different domains. In machine learning, most methods to date search for maximum a posteriori sparse solutions and neglect to represent posterior uncertain ...
Compressive Sensing (CS) combines sampling and compression into a single sub-Nyquist linear measurement process for sparse and compressible signals. In this paper, we extend the theory of CS to include signals that are concisely represented in terms of a g ...
Consider a scenario where a distributed signal is sparse and is acquired by various sensors that see different versions. Thus, we have a set of sparse signals with both some common parts, and some variations. The question is how to acquire such signals and ...
Compressed sensing (CS) suggests that a signal, sparse in some basis, can be recovered from a small number of random projections. In this paper, we apply the CS theory on sparse background-subtracted silhouettes and show the usefulness of such an approach ...
Applying image processing technology and machine vision in industry have had significant development in recent decade. Tile and ceramic industry was not excluded form this matter. By using image processing techniques in production line of this industry, it ...