Publication

Fast Geodesic Active Fields for Image Registration based on Splitting and Augmented Lagrangian Approaches

Publications associées (77)

High-Dimensional Kernel Methods under Covariate Shift: Data-Dependent Implicit Regularization

Volkan Cevher, Fanghui Liu

This paper studies kernel ridge regression in high dimensions under covariate shifts and analyzes the role of importance re-weighting. We first derive the asymptotic expansion of high dimensional kernels under covariate shifts. By a bias-variance decomposi ...
2024

BigNeuron: a resource to benchmark and predict performance of algorithms for automated tracing of neurons in light microscopy datasets

Pascal Fua, Sean Lewis Hill, Jiancheng Yang, Xiang Li, Amos Sironi, Jian Zhou, Jie Zhou, Siqi Liu

BigNeuron is an open community bench-testing platform with the goal of setting open standards for accurate and fast automatic neuron tracing. We gathered a diverse set of image volumes across several species that is representative of the data obtained in m ...
NATURE PORTFOLIO2023

(S)GD over Diagonal Linear Networks: Implicit Regularisation, Large Stepsizes and Edge of Stability

Nicolas Henri Bernard Flammarion, Scott William Pesme, Mathieu Even

In this paper, we investigate the impact of stochasticity and large stepsizes on the implicit regularisation of gradient descent (GD) and stochastic gradient descent (SGD) over diagonal linear networks. We prove the convergence of GD and SGD with macroscop ...
2023

System and method for transcoding spectral data with task-based optimization via symmetric non-negative matrix factorization

Forrest Simon Webler

A computer-implemented method for reconstructing/recovering high-resolution visible light spectral data at a target resolution d, that comprises obtaining a configuration of a low- resolution multi-channel imaging sensor of resolution p, the configuration ...
2022

Regularization via Mass Transportation

Daniel Kuhn, Soroosh Shafieezadeh Abadeh, Peyman Mohajerin Esfahani

The goal of regression and classification methods in supervised learning is to minimize the empirical risk, that is, the expectation of some loss function quantifying the prediction error under the empirical distribution. When facing scarce training data, ...
2019

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.