Algorithme génétiqueLes algorithmes génétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode exacte (ou que la solution est inconnue) pour le résoudre en un temps raisonnable. Les algorithmes génétiques utilisent la notion de sélection naturelle et l'appliquent à une population de solutions potentielles au problème donné.
Algorithme mémétiqueLes algorithmes mémétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode de résolution pour résoudre le problème de manière exacte en un temps raisonnable. Les algorithmes mémétiques sont nés d'une hybridation entre les algorithmes génétiques et les algorithmes de recherche locale. Ils utilisent le même processus de résolution que les algorithmes génétiques mais utilisent un opérateur de recherche locale après celui de mutation.
Crossover (genetic algorithm)In genetic algorithms and evolutionary computation, crossover, also called recombination, is a genetic operator used to combine the genetic information of two parents to generate new offspring. It is one way to stochastically generate new solutions from an existing population, and is analogous to the crossover that happens during sexual reproduction in biology. Solutions can also be generated by cloning an existing solution, which is analogous to asexual reproduction. Newly generated solutions may be mutated before being added to the population.
Chromosome (genetic algorithm)In genetic algorithms (GA), or more general, evolutionary algorithms (EA), a chromosome (also sometimes called a genotype) is a set of parameters which define a proposed solution of the problem that the evolutionary algorithm is trying to solve. The set of all solutions, also called individuals according to the biological model, is known as the population. The genome of an individual consists of one, more rarely of several, chromosomes and corresponds to the genetic representation of the task to be solved.
MétaheuristiqueUne métaheuristique est un algorithme d’optimisation visant à résoudre des problèmes d’optimisation difficile (souvent issus des domaines de la recherche opérationnelle, de l'ingénierie ou de l'intelligence artificielle) pour lesquels on ne connaît pas de méthode classique plus efficace. Les métaheuristiques sont généralement des algorithmes stochastiques itératifs, qui progressent vers un optimum global (c'est-à-dire l'extremum global d'une fonction), par échantillonnage d’une fonction objectif.
Programmation génétiqueLa programmation génétique est une méthode automatique inspirée par le mécanisme de la sélection naturelle tel qu'il a été établi par Charles Darwin pour expliquer l'adaptation plus ou moins optimale des organismes à leur milieu. Elle a pour but de trouver par approximations successives des programmes répondant au mieux à une tâche donnée. On nomme programmation génétique une technique permettant à un programme informatique d'apprendre, par un algorithme évolutionniste, à optimiser peu à peu une population d'autres programmes pour augmenter leur degré d'adaptation (fitness) à réaliser une tâche demandée par un utilisateur.
Analyse des exigencesEn ingénierie des systèmes et en ingénierie logicielle, l'analyse des exigences comprend les tâches qui ont pour but de déterminer les exigences d'un système nouveau ou à modifier, en prenant en compte le conflit possible entre les exigences de diverses parties prenantes, telles que les utilisateurs. L'analyse des exigences est critique pour le succès d'un projet. Les interviews de parties prenantes sont une méthode communément employée dans l'analyse des exigences.
Unité de mesureEn physique et en métrologie, une est une . Une unité de mesure peut être définie à partir de constantes fondamentales ou par un étalon, utilisé pour la mesure. Les systèmes d'unités, définis en cherchant le plus large accord dans le domaine considéré, sont rendus nécessaires par la méthode scientifique, dont l'un des fondements est la reproductibilité des expériences (donc des mesures), ainsi que par le développement des échanges d'informations commerciales ou industrielles.
Algorithme de colonies de fourmisLes algorithmes de colonies de fourmis (, ou ACO) sont des algorithmes inspirés du comportement des fourmis, ou d'autres espèces formant un superorganisme, et qui constituent une famille de métaheuristiques d’optimisation. Initialement proposé par Marco Dorigo dans les années 1990, pour la recherche de chemins optimaux dans un graphe, le premier algorithme s’inspire du comportement des fourmis recherchant un chemin entre leur colonie et une source de nourriture.
Exigence (ingénierie)Une est, dans le domaine de l'ingénierie, un besoin, une nécessité, une attente auquel un produit ou un service doit répondre ou une contrainte qu'il doit satisfaire. L'exigence peut être exprimée par une partie prenante (utilisateur, client, commercial, analyste de marchés, gestionnaire de produits, etc.) ou déterminée par les processus d'ingénierie et en particulier les activités d'études. L'approche commune à tous les domaines d'ingénierie est de définir les besoins, d'envisager des solutions, et de livrer la solution la plus appropriée.