Properties of light fields near sub-micro and nano-scale structures
Publications associées (96)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We study the plasmon modes of gold nanorods (as short as similar to 100 nm) on a nonmetallic conductive substrate using scanning tunneling microscope-induced light emission (STM-LE) with a nonplasmonic tungsten tip at room temperature in high vacuum (10-7 ...
Among the two materials families used in nanophotonics, the fundamental mode for metal nanostructures is electric, while that for dielectric nanostructures is magnetic. Consequently, the optical properties of hybrid dimers that incorporate both materials h ...
Using the kinetic approach, we study the impact of the charged particle dynamics due to the Schwinger effect on the electric field evolution during inflation. As a simple model of the electric field generation, we consider the kinetic coupling of the elect ...
Plasmonic nanostructures allow to controllably enhance linear and nonlinear light-matter interactions by concentrating the electromagnetic fields at the scales below the diffraction limit. This feature is highly desired for many applications, e.g. bio- and ...
We report thorough measurements of surface plasmon polaritons (SPPs) running along nearly perfect air-gold interfaces formed by atomically flat surfaces of chemically synthesized gold monocrystals. By means of amplitude-and phase-resolved near-field micros ...
We review three different approaches for the calculation of electromagnetic multipoles, namely, the Cartesian primitive multipoles, the Cartesian irreducible multipoles, and the spherical multipoles. We identify the latter as the best suited to describe th ...
Near-field mapping has been widely used to study hyperbolic phonon-polaritons in van der Waals crystals. However, an accurate measurement of the polaritonic loss remains challenging because of the inherent complexity of the near-field signal and the substr ...
Plasmonic effects including near-field coupling, light scattering, guided mode through surface plasmon polaritons (SPPs), Forster resonant energy transfer (FRET), and thermoplasmonics are extensively used for harnessing inexhaustible solar energy for photo ...
Charge density wave (CDW) is a startling quantum phenomenon, distorting a metallic lattice into an insulating state with a periodically modulated charge distribution. Astonishingly, such modulations appear in various patterns even within the same family of ...
In this study, we apply interferometric microscopy to study the phase, alongside the intensity, of the light field transmitted through a wide variety of samples. Additionally, we conduct those interferometric measurements at different wavelengths within th ...