Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Routine studies are performed on JET using a new set of antennas to excite Toroidal Alfven Eigenmodes (TAE). A TAE resonance footprint is observed in the plasma response measurement when there is a noticeable variation in both the amplitude and the phase of the response with respect to the excitation. An algorithm for real-time identification of TAE resonances, based on a hardware lock-in amplifier, is presently used at the Joint European Torus (JET) tokamak for detecting such variations. In this paper, we revisit the problem of estimating the I-Q characteristics from a known non-stationary frequency mode, with a resonant-like phase response, embedded in a digital signal. A non-stationary linear model is used in a recursive filter implementation of a lock-in amplifier. We propose it as a viable alternative to hardware synchronous detectors such as the one in use at the JET and compare its' performance with standard digital lock-in techniques in terms of bandwidth and phase response under high throughput rates requirements.