Non-uniform discrete Fourier transformIn applied mathematics, the nonuniform discrete Fourier transform (NUDFT or NDFT) of a signal is a type of Fourier transform, related to a discrete Fourier transform or discrete-time Fourier transform, but in which the input signal is not sampled at equally spaced points or frequencies (or both). It is a generalization of the shifted DFT. It has important applications in signal processing, magnetic resonance imaging, and the numerical solution of partial differential equations.
Classe de complexitéEn informatique théorique, et plus précisément en théorie de la complexité, une classe de complexité est un ensemble de problèmes algorithmiques dont la résolution nécessite la même quantité d'une certaine ressource. Une classe est souvent définie comme l'ensemble de tous les problèmes qui peuvent être résolus sur un modèle de calcul M, utilisant une quantité de ressources du type R, où n, est la taille de l'entrée. Les classes les plus usuelles sont celles définies sur des machines de Turing, avec des contraintes de temps de calcul ou d'espace.
Nombre de sujets nécessairesEn statistique, la détermination du nombre de sujets nécessaires est l'acte de choisir le nombre d'observations ou de répétitions à inclure dans un échantillon statistique. Ce choix est très important pour pouvoir faire de l'inférence sur une population. En pratique, la taille de l'échantillon utilisé dans une étude est déterminée en fonction du coût de la collecte des données et de la nécessité d'avoir une puissance statistique suffisante.
Quantum complexity theoryQuantum complexity theory is the subfield of computational complexity theory that deals with complexity classes defined using quantum computers, a computational model based on quantum mechanics. It studies the hardness of computational problems in relation to these complexity classes, as well as the relationship between quantum complexity classes and classical (i.e., non-quantum) complexity classes. Two important quantum complexity classes are BQP and QMA.
Asymptotic computational complexityIn computational complexity theory, asymptotic computational complexity is the usage of asymptotic analysis for the estimation of computational complexity of algorithms and computational problems, commonly associated with the usage of the big O notation. With respect to computational resources, asymptotic time complexity and asymptotic space complexity are commonly estimated. Other asymptotically estimated behavior include circuit complexity and various measures of parallel computation, such as the number of (parallel) processors.
Signal logiqueUn signal logique est un signal physique qui ne peut prendre que 2 valeurs, un niveau haut (en anglais "high" = "H"), et un niveau bas (en anglais "low" = "L"). Dans les ordinateurs et d'autres systèmes numériques, une forme d'onde qui alterne entre deux niveaux de tension représentant les deux états d'une valeur booléenne (0 et 1) est désigné comme un signal logique. Pour tout ce qui concerne la logique combinatoire ces deux niveaux suffisent.
Complexité paramétréeEn algorithmique, la complexité paramétrée (ou complexité paramétrique) est une branche de la théorie de la complexité qui classifie les problèmes algorithmiques selon leur difficulté intrinsèque en fonction de plusieurs paramètres sur les données en entrée ou sur la sortie. Ce domaine est étudié depuis les années 90 comme approche pour la résolution exacte de problèmes NP-complets. Cette approche est utilisée en optimisation combinatoire, notamment en algorithmique des graphes, en intelligence artificielle, en théorie des bases de données et en bio-informatique.
BandlimitingBandlimiting refers to a process which reduces the energy of a signal to an acceptably low level outside of a desired frequency range. Bandlimiting is an essential part of many applications in signal processing and communications. Examples include controlling interference between radio frequency communications signals, and managing aliasing distortion associated with sampling for digital signal processing. A bandlimited signal is, strictly speaking, a signal with zero energy outside of a defined frequency range.
Sampling distributionIn statistics, a sampling distribution or finite-sample distribution is the probability distribution of a given random-sample-based statistic. If an arbitrarily large number of samples, each involving multiple observations (data points), were separately used in order to compute one value of a statistic (such as, for example, the sample mean or sample variance) for each sample, then the sampling distribution is the probability distribution of the values that the statistic takes on.
ComputationA computation is any type of arithmetic or non-arithmetic calculation that is well-defined. Common examples of computations are mathematical equations and computer algorithms. Mechanical or electronic devices (or, historically, people) that perform computations are known as computers. The study of computation is the field of computability, itself a sub-field of computer science. The notion that mathematical statements should be ‘well-defined’ had been argued by mathematicians since at least the 1600s, but agreement on a suitable definition proved elusive.