In applied mathematics, the nonuniform discrete Fourier transform (NUDFT or NDFT) of a signal is a type of Fourier transform, related to a discrete Fourier transform or discrete-time Fourier transform, but in which the input signal is not sampled at equally spaced points or frequencies (or both). It is a generalization of the shifted DFT. It has important applications in signal processing, magnetic resonance imaging, and the numerical solution of partial differential equations.
As a generalized approach for nonuniform sampling, the NUDFT allows one to obtain frequency domain information of a finite length signal at any frequency. One of the reasons to adopt the NUDFT is that many signals have their energy distributed nonuniformly in the frequency domain. Therefore, a nonuniform sampling scheme could be more convenient and useful in many digital signal processing applications. For example, the NUDFT provides a variable spectral resolution controlled by the user.
The nonuniform discrete Fourier transform transforms a sequence of complex numbers into another sequence of complex numbers defined by
where are sample points and are frequencies. Note that if and , then equation () reduces to the discrete Fourier transform. There are three types of NUDFTs.
The nonuniform discrete Fourier transform of type I (NUDFT-I) uses uniform sample points but nonuniform (i.e. non-integer) frequencies . This corresponds to evaluating a generalized Fourier series at equispaced points. It is also known as NDFT.
The nonuniform discrete Fourier transform of type II (NUDFT-II) uses uniform (i.e. integer) frequencies but nonuniform sample points . This corresponds to evaluating a Fourier series at nonequispaced points. It is also known as adjoint NDFT.
The nonuniform discrete Fourier transform of type III (NUDFT-III) uses both nonuniform sample points and nonuniform frequencies . This corresponds to evaluating a generalized Fourier series at nonequispaced points. It is also known as NNDFT.
A similar set of NUDFTs can be defined by substituting for in equation ().
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours pose les bases d'un concept essentiel en ingénierie : la notion de système. Plus spécifiquement, le cours présente la théorie des systèmes linéaires invariants dans le temps (SLIT), qui sont
A theoretical and computational framework for signal sampling and approximation is presented from an intuitive geometric point of view. This lecture covers both mathematical and practical aspects of
Signal processing theory and applications: discrete and continuous time signals; Fourier analysis, DFT, DTFT,
CTFT, FFT, STFT; linear time invariant systems; filter design and adaptive filtering; samp
Least-squares spectral analysis (LSSA) is a method of estimating a frequency spectrum based on a least-squares fit of sinusoids to data samples, similar to Fourier analysis. Fourier analysis, the most used spectral method in science, generally boosts long-periodic noise in the long and gapped records; LSSA mitigates such problems. Unlike in Fourier analysis, data need not be equally spaced to use LSSA.
In mathematics, the discrete-time Fourier transform (DTFT), also called the finite Fourier transform, is a form of Fourier analysis that is applicable to a sequence of values. The DTFT is often used to analyze samples of a continuous function. The term discrete-time refers to the fact that the transform operates on discrete data, often samples whose interval has units of time. From uniformly spaced samples it produces a function of frequency that is a periodic summation of the continuous Fourier transform of the original continuous function.
L'estimation spectrale regroupe toutes les techniques d'estimation de la densité spectrale de puissance (DSP). Les méthodes d'estimation spectrale paramétriques utilisent un modèle pour obtenir une estimation du spectre. Ces modèles reposent sur une connaissance a priori du processus et peuvent être classées en trois grandes catégories : Modèles autorégressif (AR) Modèles à moyenne ajustée (MA) Modèles autorégressif à moyenne ajustée (ARMA). L'approche paramétrique se décompose en trois étapes : Choisir un modèle décrivant le processus de manière appropriée.
Basic signal processing concepts, Fourier analysis and filters. This module can
be used as a starting point or a basic refresher in elementary DSP
Adaptive signal processing, A/D and D/A. This module provides the basic
tools for adaptive filtering and a solid mathematical framework for sampling and
quantization
Advanced topics: this module covers real-time audio processing (with
examples on a hardware board), image processing and communication system design.
, ,
The Schottky monitors of the Large Hadron Collider (LHC) can be used for non-invasive beam diagnostics to estimate various bunch characteristics, such as tune, chromaticity, bunch profile or synchrotron frequency distribution. However, collective effects, ...
Iop Publishing Ltd2024
The technological advancements of the past decades have allowed transforming an increasing part of our daily actions and decisions into storable data, leading to a radical change in the scale and scope of available data in relation to virtually any object ...
EPFL2024
, , ,
We introduce and derive the Fourier -enhanced 3D electrostatic field solver of the gyrokinetic full -f PIC code PICLS. The solver makes use of a Fourier representation in one periodic direction of the domain to make the solving of the system easily paralle ...