Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In the last decade diffusion MRI has become a powerful tool to non-invasively study white-matter integrity in the brain. Recently many research groups have focused their attention on multi-shell spherical acquisitions with the aim of effectively mapping the diffusion signal with a lower number of q-space samples, hence enabling a crucial reduction of acquisition time. One of the quantities commonly studied in this context is the so-called orientation distribution function (ODF). In this setting, the spherical harmonic (SH) transform has gained a great deal of popularity thanks to its ability to perform convolution operations efficiently and accurately, such as the Funk-Radon transform notably required for ODF computation from q-space data. However, if the q-space signal is described with an unsuitable angular resolution at any b-value probed, aliasing (or interpolation) artifacts are unavoidably created. So far this aspect has been tackled empirically and, to our knowledge, no study has addressed this problem in a quantitative approach. The aim of the present work is to study more theoretically the efficiency of multi-shell spherical sampling in diffusion MRI, in order to gain understanding in HYDI-like approaches, possibly paving the way to further optimization strategies.
Jiancheng Yang, Bo Du, Kang Yuan
, , , ,