Extracting and Locating Temporal Motifs in Video Scenes Using a Hierarchical Non Parametric Bayesian Model
Publications associées (33)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This paper introduces a novel probabilistic activity modeling approach that mines recurrent sequential patterns called motifs from documents given as word×time count matrices (e.g., videos). In this model, documents are represented as a mixture of sequenti ...
In a society which produces and consumes an ever increasing amount of information, methods which can make sense out of al1 this data become of crucial importance. Machine learning tries to develop models which can make the information load accessible. Thre ...
The recognition of events in multimedia data is a challenging area of research. The growth in the amount of multimedia data being produced and stored increases the need for systems capable of automatically analysing this data. This analysis can aid in effi ...
A common assumption in activity recognition is that the system remains unchanged between its design and its posterior operation. However, many factors affect the data distribution between two different experimental sessions. One of these factors is the pot ...
The thesis work was motivated by the goal of developing personalized speech-to-speech translation and focused on one of its key component techniques – cross-lingual speaker adaptation for text-to-speech synthesis. A personalized speech-to-speech translator ...
In this paper, to learn multiple tasks sharing same inputs, a two-layer architecture for a reservoir based recurrent neural network is proposed. The inputs are fed into the general workspace layer where the weights are adapted to provide maximum informatio ...
This is the second episode of the Bayesian saga started with the tutorial on the Bayesian probability. Its aim is showing in very informal terms how supervised learning can be interpreted from the Bayesian viewpoint. The focus is put on supervised learning ...
In this thesis, we address the analysis of activities from long term data logs with an emphasis on video recordings. Starting from simple words from video, we progressively build methods to infer higher level scene semantics. The main strategies used to ac ...
Networks are everywhere and we are confronted with many networks in our daily life. Networks such as Internet, World Wide Web, social, biological and economical networks have been subject to extensive studies in the last decade. The volume of publications ...
How do animals learn to repeat behaviors that lead to the obtention of food or other “rewarding” objects? As a biologically plausible paradigm for learning in spiking neural networks, spike-timing dependent plasticity (STDP) has been shown to perform well ...