Publication

Data-Driven Enhancement of State Mapping-Based Cross-Lingual Speaker Adaptation

Hui Liang
2012
Thèse EPFL
Résumé

The thesis work was motivated by the goal of developing personalized speech-to-speech translation and focused on one of its key component techniques – cross-lingual speaker adaptation for text-to-speech synthesis. A personalized speech-to-speech translator enables a person’s spoken input to be translated into spoken output in another language while maintaining his/her voice identity. Before addressing any technical issues, work in this thesis set out to understand human perception of speaker identity. Listening tests were conducted in order to determine whether people could differentiate between speakers when they spoke different languages. The results demonstrated that differentiating between speakers across languages was an achievable task. However, it was difficult for listeners to differentiate between speakers across both languages and speech types (original recordings versus synthesized samples). The underlying challenge in cross-lingual speaker adaptation is how to apply speaker adaptation techniques when the language of adaptation data is different from that of synthesis models. The main body of the thesis work was devoted to the analysis and improvement of HMM state mapping-based cross-lingual speaker adaptation. Firstly, the effect of unsupervised cross-lingual adaptation was investigated, as it relates to the application scenario of personalized speech-to-speech translation. The comparison of paired supervised and unsupervised systems shows that the performance of unsupervised cross-lingual speaker adaptation is comparable to that of the supervised fashion, even if the average phoneme error rate of the unsupervised systems is around 75%. Then the effect of the language mismatch between synthesis models and adaptation data was investigated. The mismatch is found to transfer undesirable language information from adaptation data to synthesis models, thereby limiting the effectiveness of generating multiple regression class-specific transforms, using larger quantities of adaptation data and estimating adaptation transforms iteratively. Thirdly, in order to tackle the problems caused by the language mismatch, a data-driven adaptation framework using phonological knowledge is proposed. Its basic idea is to group HMM states according to phonological knowledge in a data-driven manner and then to map each state to a phonologically consistent counterpart in a different language. This framework is also applied to regression class tree construction for transform estimation. It is found that the proposed framework alleviates the negative effect of the language mismatch and gives consistent improvement compared to previous state-of-the-art approaches. Finally, a two-layer hierarchical transformation framework is developed, where one layer captures speaker characteristics and the other compensates for the language mismatch. The most appropriate means to construct the hierarchical arrangement of transforms was investigated in an initial study. While early results show some promise, further in-depth investigation is needed to confirm the validity of this hierarchy.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (36)
Synthèse vocale
La synthèse vocale est une technique informatique de synthèse sonore qui permet de créer de la parole artificielle à partir de n'importe quel texte. Pour obtenir ce résultat, elle s'appuie à la fois sur des techniques de traitement linguistique, notamment pour transformer le texte orthographique en une version phonétique prononçable sans ambiguïté, et sur des techniques de traitement du signal pour transformer cette version phonétique en son numérisé écoutable sur un haut parleur.
Reconnaissance automatique de la parole
vignette|droite|upright=1.4|La reconnaissance vocale est habituellement traitée dans le middleware ; les résultats sont transmis aux applications utilisatrices. La reconnaissance automatique de la parole (souvent improprement appelée reconnaissance vocale) est une technique informatique qui permet d'analyser la voix humaine captée au moyen d'un microphone pour la transcrire sous la forme d'un texte exploitable par une machine.
Transformation de Fourier
thumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.
Afficher plus
Publications associées (43)

Sparse Autoencoders for Speech Modeling and Recognition

Selen Hande Kabil

Speech recognition-based applications upon the advancements in artificial intelligence play an essential role to transform most aspects of modern life. However, speech recognition in real-life conditions (e.g., in the presence of overlapping speech, varyin ...
EPFL2023

Can Self-Supervised Neural Networks Pre-Trained on Human Speech distinguish Animal Callers?

Mathew Magimai Doss, Eklavya Sarkar

Self-supervised learning (SSL) models use only the intrinsic structure of a given signal, independent of its acoustic domain, to extract essential information from the input to an embedding space. This implies that the utility of such representations is no ...
ISCA2023

Automatic pathological speech assessment

Parvaneh Janbakhshi

Many pathologies cause impairments in the speech production mechanism resulting in reduced speech intelligibility and communicative ability. To assist the clinical diagnosis, treatment and management of speech disorders, automatic pathological speech asses ...
EPFL2022
Afficher plus
MOOCs associés (10)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.