Géométrie complexeIn mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.
Wicked problemIn planning and policy, a wicked problem is a problem that is difficult or impossible to solve because of incomplete, contradictory, and changing requirements that are often difficult to recognize. It refers to an idea or problem that cannot be fixed, where there is no single solution to the problem; and "wicked" denotes resistance to resolution, rather than evil. Another definition is "a problem whose social complexity means that it has no determinable stopping point".
Dynamique et gestion des pêcheriesUne pêcherie désigne une zone marine dont les ressources halieutiques sont exploitées par un groupe de pêcheurs. La dynamique des pêcheries, à l'image de la dynamique des populations, résulte d'un ensemble de variations qui interviennent au sein d'un écosystème (taux de natalité et de mortalité, flux de migration) et tient compte des différentes contraintes appliquées par une pêcherie.
Cousin problemsIn mathematics, the Cousin problems are two questions in several complex variables, concerning the existence of meromorphic functions that are specified in terms of local data. They were introduced in special cases by Pierre Cousin in 1895. They are now posed, and solved, for any complex manifold M, in terms of conditions on M. For both problems, an open cover of M by sets Ui is given, along with a meromorphic function fi on each Ui. The first Cousin problem or additive Cousin problem assumes that each difference is a holomorphic function, where it is defined.