Filter designFilter design is the process of designing a signal processing filter that satisfies a set of requirements, some of which may be conflicting. The purpose is to find a realization of the filter that meets each of the requirements to a sufficient degree to make it useful. The filter design process can be described as an optimization problem where each requirement contributes to an error function that should be minimized. Certain parts of the design process can be automated, but normally an experienced electrical engineer is needed to get a good result.
Complexité paramétréeEn algorithmique, la complexité paramétrée (ou complexité paramétrique) est une branche de la théorie de la complexité qui classifie les problèmes algorithmiques selon leur difficulté intrinsèque en fonction de plusieurs paramètres sur les données en entrée ou sur la sortie. Ce domaine est étudié depuis les années 90 comme approche pour la résolution exacte de problèmes NP-complets. Cette approche est utilisée en optimisation combinatoire, notamment en algorithmique des graphes, en intelligence artificielle, en théorie des bases de données et en bio-informatique.
Complexité en espaceEn algorithmique, la complexité en espace est une mesure de l'espace utilisé par un algorithme, en fonction de propriétés de ses entrées. L'espace compte le nombre maximum de cases mémoire utilisées simultanément pendant un calcul. Par exemple le nombre de symboles qu'il faut conserver pour pouvoir continuer le calcul. Usuellement l'espace que l'on prend en compte lorsque l'on parle de l'espace nécessaire pour des entrées ayant des propriétés données est l'espace nécessaire le plus grand parmi ces entrées ; on parle de complexité en espace dans le pire cas.
Complexité de KolmogorovEn informatique théorique et en mathématiques, plus précisément en théorie de l'information, la complexité de Kolmogorov, ou complexité aléatoire, ou complexité algorithmique d'un objet — nombre, , chaîne de caractères — est la taille du plus petit algorithme (dans un certain langage de programmation fixé) qui engendre cet objet. Elle est nommée d'après le mathématicien Andreï Kolmogorov, qui publia sur le sujet dès 1963. Elle est aussi parfois nommée complexité de Kolmogorov-Solomonoff.
Atténuation du signalvignette|296x296px|L'atténuation du signal en fonction de la fréquence et du temps laisse apparaître un motif nuageux sur un spectrogramme. Le temps est représenté sur l'axe horizontal, la fréquence sur l'axe vertical. L'intensité du signal apparaît en niveaux de gris. Dans les transmissions sans fil, l'atténuation du signal ou évanouissement (fading) est la variation de la puissance du signal causée par plusieurs variables. Ces variables incluent le temps, la position géographique et la fréquence.
WiMAXWiMAX (acronyme pour Worldwide Interoperability for Microwave Access) désigne un standard de communication sans fil. Aujourd'hui il est surtout utilisé comme système de transmission et d'accès à Internet à haut débit, portant sur une zone géographique étendue. Ce terme est également employé comme label commercial, à l'instar du Wi-Fi. WiMAX est défini par une famille de normes (IEEE 802.16) qui définissent une technique de transmissions de données à haut débit, par voie hertzienne.
Radio intelligenteEn télécommunication, une radio intelligente ou radio cognitive est un équipement émetteur ou récepteur capable d'adapter certains de ses paramètres automatiquement en fonction de son environnement. Le concept de radio intelligente a été introduit en 1999 par Joseph Mitola. Joseph Mitola travaillait sur la radio logicielle. Il proposa d'utiliser les possibilités de reconfiguration apportées par le logiciel pour transformer les équipements radio statiques en équipements radio dynamiques capables d'adapter leurs paramètres comme la modulation, la puissance d'émission ou les bandes de fréquence utilisées.
Overlap–save methodIn signal processing, overlap–save is the traditional name for an efficient way to evaluate the discrete convolution between a very long signal and a finite impulse response (FIR) filter : where h[m] = 0 for m outside the region [1, M]. This article uses common abstract notations, such as or in which it is understood that the functions should be thought of in their totality, rather than at specific instants (see Convolution#Notation). The concept is to compute short segments of y[n] of an arbitrary length L, and concatenate the segments together.
Circuit complexityIn theoretical computer science, circuit complexity is a branch of computational complexity theory in which Boolean functions are classified according to the size or depth of the Boolean circuits that compute them. A related notion is the circuit complexity of a recursive language that is decided by a uniform family of circuits (see below). Proving lower bounds on size of Boolean circuits computing explicit Boolean functions is a popular approach to separating complexity classes.
Circuit intégréLe circuit intégré (CI), aussi appelé puce électronique, est un composant électronique, basé sur un semi-conducteur, reproduisant une ou plusieurs fonctions électroniques plus ou moins complexes, intégrant souvent plusieurs types de composants électroniques de base dans un volume réduit (sur une petite plaque), rendant le circuit facile à mettre en œuvre. Il existe une très grande variété de ces composants divisés en deux grandes catégories : analogique et numérique.