Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This paper presents a new approach to estimate "universal" phoneme posterior probabilities for mixed language speech recognition. More specifically, we propose a new theoretical framework to combine phoneme class posterior probabilities in a principled way by using (statistical) evidence about the language identity. We investigate the proposed approach in a mixed language environment (SpeechDat(II)) consisting of five European languages. Our studies show that the proposed approach can yield significant improvements on a mixed language task, while maintaining the performance on monolingual tasks. Additionally, through a case study, we also demonstrate the potential benefits of the proposed approach for non-native speech recognition.