Publication

Molecular associative memory: An associative memory framework with exponential storage capacity for DNA computing

Résumé

Associative memory problem: Find the closest stored vector (in Hamming distance) to a given query vector. There are different ways to implement an associative memory, including the neural networks and DNA strands. Using neural networks, connection weights are adjusted in order to perform association. Recall procedure is iterative and relies on simple neural operations. In this case, the design criteria is maximizing the number of stored patterns C while having some noise tolerance. The molecular implementation is based on synthesizing C DNA strands as stored vectors. Recall procedure is usually done in one shot via chemical reactions and relies on highly parallelism of DNA computing. Here, the design criteria: finding proper DNA sequences to minimize probability of error during the recall phase. Current molecular associative memories are either low in storage capacity, if implemented using molecular realizations of neural networks, or very complex to implement, if all the stored sequences have to be synthesized. We introduce an associative memory framework with exponential storage capacity based on transcriptional networks of DNA switches. The advantages of the proposed approach over current methods are: 1. Exponential storage capacities with current neural network-based approaches can not be achieved. 2. For other methods, although having exponential storage capacities is possible, it is very complex as it requires synthesizing an extraordinarily large number of DNA strands.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.