Déformation plastiqueLa théorie de la plasticité traite des déformations irréversibles indépendantes du temps, elle est basée sur des mécanismes physiques intervenant dans les métaux et alliages mettant en jeu des mouvements de dislocations (un réarrangement de la position relative des atomes, ou plus généralement des éléments constitutifs du matériau) dans un réseau cristallin sans influence de phénomènes visqueux ni présence de décohésion endommageant la matière. Une des caractéristiques de la plasticité est qu’elle n’apparaît qu’une fois un seuil de charge atteint.
Durcissement structuralLe durcissement structural est comme son nom l'indique un procédé permettant de durcir un alliage de métaux. Il nécessite un alliage métastable, dont la forme stable à température ambiante est un composé intermétallique constitué de deux phases différentes. Un recuit à l'intérieur du nez du diagramme TTT entraîne la germination de précipités de différentes nouvelles phases plus ou moins stables. Ces précipités, qu'ils soient cohérents ou incohérents avec la phase principale constituent des obstacles sur le chemin des dislocations ce qui augmente la dureté ainsi que les propriétés en traction du matériau.
Gilet pare-ballesvignette|upright|alt=Agent de police en uniforme portant un gilet pare-balles réglementaire et un fusil d'assaut, dans une rue.|right|Un policier londonien portant un gilet pare-balles. vignette|alt=Équipements de combat saisis par la police, exposés sur une table.|right|Gilets pare-balles (en haut) et armes, lors d'une saisie. Le gilet pare-balles est un équipement principalement destiné à protéger le thorax, l'abdomen et le dos contre le tir d'armes à feu en empêchant la pénétration de la balle et en absorbant son impact.
Règle de Cauchyvignette|Diagramme de décision pour l'application de la règle de Cauchy En mathématiques, la règle de Cauchy, qui doit son nom au mathématicien français Augustin Cauchy, est un critère de convergence pour une série à termes réels ou complexes, ou plus généralement à termes dans un espace vectoriel normé. Cette règle est parfois confondue avec le « critère de Cauchy » selon lequel, dans un espace complet comme R ou C, toute suite de Cauchy converge.