Chebyshev polynomial approximation for transductive learning on graphs
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We examine the connection of two graph parameters, the size of a minimum feedback arcs set and the acyclic disconnection. A feedback arc set of a directed graph is a subset of arcs such that after deletion the graph becomes acyclic. The acyclic disconnecti ...
This article focuses on spectral methods for recovering communities in temporal networks. In the case of fixed communities, spectral clustering on the simple time-aggregated graph (i.e., the weighted graph formed by the sum of the interactions over all tem ...
Spectral algorithms are some of the main tools in optimization and inference problems on graphs. Typically, the graph is encoded as a matrix and eigenvectors and eigenvalues of the matrix are then used to solve the given graph problem. Spectral algorithms ...
This work presents a graph neural network (GNN) framework for solving the maximum independent set (MIS) problem, inspired by dynamic programming (DP). Specifically, given a graph, we propose a DP-like recursive algorithm based on GNNs that firstly construc ...
We consider the problem of learning a target function corresponding to a deep, extensive-width, non-linear neural network with random Gaussian weights. We consider the asymptotic limit where the number of samples, the input dimension and the network width ...
H & uuml;sler-Reiss vectors and Brown-Resnick fields are popular models in multivariate and spatial extreme-value theory, respectively, and are widely used in applications. We provide analytical formulas for the correlation between powers of the components ...
Intelligent fault diagnosis has been increasingly improved with the evolution of deep learning (DL) approaches. Recently, the emerging graph neural networks (GNNs) have also been introduced in the field of fault diagnosis with the goal to make better use o ...
We exhibit an unambiguous k-DNF formula that requires CNF width (Omega) over tilde (k(2)), which is optimal up to logarithmic factors. As a consequence, we get a near-optimal solution to the Alon-Saks-Seymour problem in graph theory (posed in 1991), which ...
We present a framework for performing regression when both covariate and response are probability distributions on a compact and convex subset of Rd. Our regression model is based on the theory of optimal transport and links the conditional Fr'echet m ...
Community structure in graph-modeled data appears in a range of disciplines that comprise network science. Its importance relies on the influence it bears on other properties of graphs such as resilience, or prediction of missing connections. Nevertheless, ...