Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We study the sparsity of spectro-temporal representation of speech in reverberant acoustic conditions. This study motivates the use of structured sparsity models for efficient speech recovery. We formulate the underdetermined convolutive speech separation in spectro-temporal domain as the sparse signal recovery where we leverage model-based recovery algorithms. To tackle the ambiguity of the real acoustics, we exploit the Image model of the enclosures to estimate the room impulse response function through a structured sparsity constraint optimization. The experiments conducted on real data recordings demonstrate the effectiveness of the proposed approach for multi-party speech applications.
Hervé Bourlard, Afsaneh Asaei, Dhananjay Ram
Jean-Philippe Thiran, Yves Wiaux, Dimitris Perdios, Adrien Georges Jean Besson