Community structureIn the study of complex networks, a network is said to have community structure if the nodes of the network can be easily grouped into (potentially overlapping) sets of nodes such that each set of nodes is densely connected internally. In the particular case of non-overlapping community finding, this implies that the network divides naturally into groups of nodes with dense connections internally and sparser connections between groups. But overlapping communities are also allowed.
Système complexevignette|Visualisation sous forme de graphe d'un réseau social illustrant un système complexe. Un système complexe est un ensemble constitué d'un grand nombre d'entités en interaction dont l'intégration permet d'achever un but commun. Les systèmes complexes sont caractérisés par des propriétés émergentes qui n'existent qu'au niveau du système et ne peuvent pas être observées au niveau de ses constituants. Dans certains cas, un observateur ne peut pas prévoir les rétroactions ou les comportements ou évolutions des systèmes complexes par le calcul, ce qui amène à les étudier à l'aide de la théorie du chaos.
Coefficient de clusteringalt=|vignette|Un graphe de fort coefficient de clustering. En théorie des graphes et en analyse des réseaux sociaux, le coefficient de clustering d'un graphe (aussi appelé coefficient d'agglomération, de connexion, de regroupement, d'agrégation ou de transitivité), est une mesure du regroupement des nœuds dans un réseau. Plus précisément, ce coefficient est la probabilité que deux nœuds soient connectés sachant qu'ils ont un voisin en commun.
AssortativityAssortativity, or assortative mixing, is a preference for a network's nodes to attach to others that are similar in some way. Though the specific measure of similarity may vary, network theorists often examine assortativity in terms of a node's degree. The addition of this characteristic to network models more closely approximates the behaviors of many real world networks. Correlations between nodes of similar degree are often found in the mixing patterns of many observable networks.
Neurosciences des systèmesLes neurosciences des systèmes est un sous-domaine des neurosciences qui étudie le fonctionnement du système nerveux sous l'angle de l'analyse des systèmes et des réseaux, c'est-à-dire en considérant les circuits nerveux dans leur ensemble, aux niveaux moléculaire et cellulaire mais aussi à plus large échelle. L'une des particularités de ce champ de recherche par opposition à d'autres approches en neurosciences est de s'organiser autour des grands circuits de neurotransmetteurs comme la dopamine et d'étudier leurs rôles aussi bien aux niveaux intégrés du comportement et de la cognition que leur mécanismes d'action sur la physiologie des neurones.