Machine à registres illimitésEn informatique, une machine à registres illimités ou URM (de l'anglais : Unlimited Register Machine) est un modèle abstrait du fonctionnement des appareils mécaniques de calcul, tout comme les machines de Turing et le lambda-calcul. Une URM est Turing-complète. Les registres de la machine sont représentés par : et peuvent contenir des éléments de . Un programme pour cette machine est représenté par toute suite de la forme : qui contient une suite finie d'instructions.
Hypothèse calculatoireEn cryptographie, une hypothèse de difficulté calculatoire est une hypothèse qui sert à évaluer et à démontrer la robustesse des primitives cryptographiques. Dans certains cas, la sécurité est dite inconditionnelle si elle ne repose sur aucune hypothèse de difficulté calculatoire ; un exemple courant est la technique dite du masque jetable, où le masque est aussi grand que le message. Cependant, il est souvent impossible d'atteindre une forme de sécurité aussi forte ; dans de tels cas, les cryptographes doivent s'en remettre à une forme de sécurité dite « calculatoire ».
General-purpose processing on graphics processing unitsGPGPU est l'abréviation de general-purpose computing on graphics processing units, c'est-à-dire calcul générique sur processeur graphique. L'objectif de tels calculs est de bénéficier de la capacité de traitement parallèle des processeurs graphiques. Avant l'arrivée des GPGPU, le CPU, processeur central de l'ordinateur, traitait la plupart des opérations lourdes en calcul comme les simulations physiques, le rendu hors-ligne pour les films, les calculs de risques pour les institutions financières, la prévision météorologique, l'encodage de fichier vidéo et son Intel avec ses 80 % de parts de marché sur les CPU dominait donc très largement tous les besoins en calcul et pouvait en extraire de substantielles marges.
Processeur vectorielvignette|Processeur vectoriel d'un supercalculateur Cray-1. Un processeur vectoriel est un processeur possédant diverses fonctionnalités architecturales lui permettant d'améliorer l’exécution de programmes utilisant massivement des tableaux, des matrices, et qui permet de profiter du parallélisme inhérent à l'usage de ces derniers. Développé pour des applications scientifiques et exploité par les machines Cray et les supercalculateurs qui lui feront suite, ce type d'architecture a rapidement montré ses avantages pour des applications grand public (on peut citer la manipulation d'images).
Problème de plus court cheminvignette|Exemple d'un plus court chemin du sommet A au sommet F : (A, C, E, D, F). En théorie des graphes, le 'problème de plus court chemin' est le problème algorithmique qui consiste à trouver un chemin d'un sommet à un autre de façon que la somme des poids des arcs de ce chemin soit minimale. Il existe de nombreuses variantes de ce problème suivant que le graphe est fini, orienté ou non, que chaque arc ou arête possède ou non une valeur qui peut être un poids ou une longueur.
Problème à N corpsLe problème à N corps est un problème de mécanique céleste consistant à déterminer les trajectoires d'un ensemble de N corps s'attirant mutuellement ; plus précisément, il s'agit de résoudre les équations du mouvement de Newton pour N corps interagissant gravitationnellement, connaissant leurs masses ainsi que leurs positions et vitesses initiales. Le cas (problème à deux corps) a été résolu par Newton, mais dès (problème à trois corps) apparaissent des solutions essentiellement impossibles à expliciter, car sensibles aux conditions initiales.
Problème de réseauIn computer science, lattice problems are a class of optimization problems related to mathematical objects called lattices. The conjectured intractability of such problems is central to the construction of secure lattice-based cryptosystems: Lattice problems are an example of NP-hard problems which have been shown to be average-case hard, providing a test case for the security of cryptographic algorithms. In addition, some lattice problems which are worst-case hard can be used as a basis for extremely secure cryptographic schemes.
Dureté (matériau)La dureté d'un matériau est définie comme la résistance mécanique qu'un matériau oppose à la pénétration. Pour mesurer la dureté d'un matériau, un pénétrateur de faible déformabilité (cône ou sphère en diamant, carbure de tungstène lié au cobalt ou acier extra-dur) est enfoncé à la surface du matériau à tester avec une force connue pendant un temps donné. Plus l'empreinte laissée est petite, plus le matériau est dur. La dureté se mesure sur différentes échelles selon le type de matériau considéré.
Conjecture des jeux uniquesLa conjecture des jeux uniques (en anglais Unique Games Conjecture et souvent abrégée UGC) est une conjecture en théorie de la complexité, proposée par Subhash Khot en 2002. Selon cette conjecture, résoudre de manière approximative un certain problème spécifique est NP-difficile. Elle a d'importantes applications relatives à la complexité des algorithmes d'approximation ; le travail qui a été fourni autour de cette conjecture a également permis de démontrer des résultats relatifs à d'autres sujets, par exemple sur la stabilité des systèmes de vote.
Problème à deux corpsLe problème à deux corps est un modèle théorique important en mécanique, qu'elle soit classique ou quantique, dans lequel sont étudiés les mouvements de deux corps assimilés à des points matériels en interaction mutuelle (conservative), le système global étant considéré comme isolé. Dans cet article, seul sera abordé le problème à deux corps en mécanique classique (voir par exemple l'article atome d'hydrogène pour un exemple en mécanique quantique), d'abord dans le cas général d'un potentiel attractif, puis dans le cas particulier très important où les deux corps sont en interaction gravitationnelle, ou mouvement képlérien, lequel est un sujet important de la mécanique céleste.