Plus petit commun multipleEn mathématiques, et plus précisément en arithmétique, le plus petit commun multiple – en abrégé PPCM – (peut s'appeler aussi PPMC, soit « plus petit multiple commun ») de deux entiers non nuls a et b est le plus petit entier strictement positif qui soit multiple de ces deux nombres. On le note a ∨ b ou PPCM(a, b), ou parfois simplement [a, b]. On peut également définir le PPCM de a et b comme un multiple commun de a et de b qui divise tous les autres.
Proofs of quadratic reciprocityIn number theory, the law of quadratic reciprocity, like the Pythagorean theorem, has lent itself to an unusually large number of proofs. Several hundred proofs of the law of quadratic reciprocity have been published. Of the elementary combinatorial proofs, there are two which apply types of double counting. One by Gotthold Eisenstein counts lattice points. Another applies Zolotarev's lemma to , expressed by the Chinese remainder theorem as and calculates the signature of a permutation.
Critère d'EulerEn mathématiques et plus précisément en arithmétique modulaire, le critère d'Euler est un théorème utilisé en théorie des nombres pour déterminer si un entier donné est un résidu quadratique (autrement dit, un carré) modulo un nombre premier. Soient un nombre premier différent de 2 et un entier premier avec . Si est un résidu quadratique modulo , alors . Si n'est pas un résidu quadratique modulo alors . Ce qui se résume, en utilisant le symbole de Legendre, par : La preuve repose sur le petit théorème de Fermat et sur le fait que dans un anneau intègre, un polynôme n'a jamais plus de racines que son degré.