En mathématiques, et plus précisément en arithmétique, le plus petit commun multiple – en abrégé PPCM – (peut s'appeler aussi PPMC, soit « plus petit multiple commun ») de deux entiers non nuls a et b est le plus petit entier strictement positif qui soit multiple de ces deux nombres. On le note a ∨ b ou PPCM(a, b), ou parfois simplement [a, b].
On peut également définir le PPCM de a et b comme un multiple commun de a et de b qui divise tous les autres. Cette seconde définition se généralise à un anneau commutatif quelconque, mais on perd en général l'existence et l'unicité ; on parle alors d'un PPCM de deux éléments. L'existence est assurée dans les anneaux intègres factoriels ou même seulement à PGCD.
Plus généralement, le PPCM se définit pour un nombre quelconque d'éléments : le PPCM de n entiers non nuls est le plus petit entier strictement positif multiple simultanément de ces n entiers.
Soient a et b deux entiers relatifs :
si a ou b est nul, PPCM(a, b) = 0 ;
si a et b sont non nuls, considérons l'ensemble des entiers strictement positifs qui sont multiples à la fois de a et de b. Cet ensemble d'entiers naturels est non vide, car il contient |ab|. Il possède donc un plus petit élément, et c'est cet entier (strictement positif) que l'on appelle le PPCM de a et b :
La décomposition en facteurs premiers du PPCM de n entiers strictement positifs contient tous les nombres premiers qui apparaissent dans au moins une des décompositions en facteurs premiers de ces n entiers, chacun affecté du plus grand exposant qui apparait dans celles-ci.
On obtient donc une méthode de calcul du PPCM en décomposant chaque nombre en produit de nombres premiers.
Exemple
Prenons les nombres 60 et 168 et décomposons-les en produits de facteurs premiers. On a :
60 = 2×2×3×5 = 2×3×5 ;
168 = 2×2×2×3×7 = 2×3×7.
Pour le nombre premier 2, le plus grand exposant est 3. Pour les nombres premiers 3, 5 et 7, le plus grand exposant est 1. On a ainsi .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
vignette|Nombres naturels de zéro à cent. Les nombres premiers sont marqués en rouge. vignette|Le nombre 7 est premier car il admet exactement deux diviseurs positifs distincts. Un nombre premier est un entier naturel qui admet exactement deux diviseurs distincts entiers et positifs. Ces deux diviseurs sont 1 et le nombre considéré, puisque tout nombre a pour diviseurs 1 et lui-même (comme le montre l’égalité n = 1 × n), les nombres premiers étant ceux qui ne possèdent pas d'autre diviseur.
En arithmétique élémentaire, le plus grand commun diviseur ou PGCD de deux nombres entiers non nuls est le plus grand entier qui les divise simultanément. Par exemple, le PGCD de 20 et de 30 est 10, puisque leurs diviseurs communs sont 1, 2, 5 et 10. Cette notion s'étend aux entiers relatifs grâce aux propriétés de la division euclidienne. Elle se généralise aussi aux anneaux euclidiens comme l'anneau des polynômes sur un corps commutatif. La notion de PGCD peut être définie dans tout anneau commutatif.
thumb|Trois quarts de gâteau, un quart ayant été retiré. En mathématiques, une fraction est un moyen d'écrire un nombre rationnel sous la forme d'un quotient de deux entiers. La fraction a/b désigne le quotient de a par b (b≠0). Dans cette fraction, a est appelé le numérateur et b le dénominateur. Une fraction représente un partage, le dénominateur représente le nombre de parts égales faites dans une unité et son numérateur représente le nombre de parts prises dans l'unité Un nombre que l'on peut représenter par des fractions de nombres entiers est appelé nombre rationnel.
Couvre l'algorithme de recherche d'ordre quantique en utilisant l'estimation de phase quantique (QPE), en se concentrant sur l'algorithme d'affacturage de Shor.
Historically speaking, the notion of the type was reintroduced to the larger architectural discourse as a direct consequence of the crisis of the Modern. The task of revisiting the forms of the past also dictated the return of architectural methods that ha ...
Correlated errors of experimental data are a common but often neglected problem in physical sciences. Various tools are provided here for thorough propagation of uncertainties in cases of correlated errors. Discussed are techniques especially applicable to ...
Participation in the context of urban planning is growing in the urban and architectural processes of democratic cities. Urban co-creation means working with communities by integrating their needs, giving them the opportunity to collaborate in the transfor ...