Réduction de la dimensionnalitévignette|320x320px|Animation présentant la projection de points en deux dimensions sur les axes obtenus par analyse en composantes principales, une méthode populaire de réduction de la dimensionnalité La réduction de la dimensionnalité (ou réduction de (la) dimension) est un processus étudié en mathématiques et en informatique, qui consiste à prendre des données dans un espace de grande dimension, et à les remplacer par des données dans un espace de plus petite dimension.
Scale space implementationIn the areas of computer vision, and signal processing, the notion of scale-space representation is used for processing measurement data at multiple scales, and specifically enhance or suppress image features over different ranges of scale (see the article on scale space). A special type of scale-space representation is provided by the Gaussian scale space, where the image data in N dimensions is subjected to smoothing by Gaussian convolution.
Génie biologiquevignette|Biologiste en pleine étude Le génie biologique désigne l'application des concepts et méthodes de la biologie (et accessoirement de la physique, chimie, mathématiques et informatique) afin de résoudre les problèmes relatifs aux sciences du vivant, en utilisant les méthodes analytiques et de synthèses propres à l'ingénierie ainsi que son expérience quant au coût et à la faisabilité d'une solution.
Fléau de la dimensionLe fléau de la dimension ou malédiction de la dimension (curse of dimensionality) est un terme inventé par Richard Bellman en 1961 pour désigner divers phénomènes qui ont lieu lorsque l'on cherche à analyser ou organiser des données dans des espaces de grande dimension alors qu'ils n'ont pas lieu dans des espaces de dimension moindre. Plusieurs domaines sont concernés et notamment l'apprentissage automatique, la fouille de données, les bases de données, l'analyse numérique ou encore l'échantillonnage.
Analyse dimensionnellethumb|Préparation d'une maquette dans un bassin d'essai. L'analyse dimensionnelle est une méthode pratique permettant de vérifier l'homogénéité d'une formule physique à travers ses équations aux dimensions, c'est-à-dire la décomposition des grandeurs physiques qu'elle met en jeu en un produit de grandeurs de base : longueur, durée, masse, intensité électrique, irréductibles les unes aux autres.
DimensionLe terme dimension, du latin dimensio « action de mesurer », désigne d’abord chacune des grandeurs d’un objet : longueur, largeur et profondeur, épaisseur ou hauteur, ou encore son diamètre si c'est une pièce de révolution. L’acception a dérivé de deux façons différentes en physique et en mathématiques. En physique, la dimension qualifie une grandeur indépendamment de son unité de mesure, tandis qu’en mathématiques, la notion de dimension correspond au nombre de grandeurs nécessaires pour identifier un objet, avec des définitions spécifiques selon le type d’objet (algébrique, topologique ou combinatoire notamment).
Nonlinear dimensionality reductionNonlinear dimensionality reduction, also known as manifold learning, refers to various related techniques that aim to project high-dimensional data onto lower-dimensional latent manifolds, with the goal of either visualizing the data in the low-dimensional space, or learning the mapping (either from the high-dimensional space to the low-dimensional embedding or vice versa) itself. The techniques described below can be understood as generalizations of linear decomposition methods used for dimensionality reduction, such as singular value decomposition and principal component analysis.
Niveau d'organisation (biologie)En biologie, les niveaux d'organisation du vivant forment une hiérarchie des structures et des systèmes biologiques complexes qui définissent la vie en utilisant une approche réductionniste. La hiérarchie traditionnelle, détaillée ci-dessous, s'étend des atomes aux biosphères. Chaque niveau de la hiérarchie représente une augmentation de la complexité organisationnelle, chaque « objet » étant principalement composé de l'unité de base du niveau précédent.