Chromodynamique quantiqueLa chromodynamique quantique (en abrégé CDQ ou QCD, ce dernier de l'anglais Quantum ChromoDynamics) est une théorie physique qui décrit l’interaction forte, l’une des quatre forces fondamentales, qui permet de comprendre les interactions entre les quarks et les gluons et, au passage, la cohésion du noyau atomique. Elle fut proposée en 1973 par H. David Politzer, Frank Wilczek et David Gross pour comprendre la structure des hadrons (c'est-à-dire d'une part les baryons comme les protons, neutrons et particules similaires, et d'autre part les mésons).
RenormalisationEn théorie quantique des champs (ou QFT), en mécanique statistique des champs, dans la théorie des structures géométriques autosimilaires, une renormalisation est une manière, variable dans sa nature, de prendre la limite du continu quand certaines constructions statistiques et quantiques deviennent indéfinies. La renormalisation détermine la façon de relier les paramètres de la théorie quand ces paramètres à grande échelle diffèrent de leur valeur à petite échelle.
Modèle standard de la physique des particulesvignette|upright=2.0|Modèle standard des particules élémentaires avec les trois générations de fermions (trois premières colonnes), les bosons de jauge (quatrième colonne) et le boson de Higgs (cinquième colonne). Le modèle standard de la physique des particules est une théorie qui concerne l'électromagnétisme, les interactions nucléaires faible et forte, et la classification de toutes les particules subatomiques connues. Elle a été développée pendant la deuxième moitié du , dans une initiative collaborative mondiale, sur les bases de la mécanique quantique.
Groupe de renormalisationEn physique statistique, le groupe de renormalisation est un ensemble de transformations qui permettent de transformer un hamiltonien en un autre hamiltonien par élimination de degrés de liberté tout en laissant la fonction de partition invariante. Il s'agit plus exactement d'un semi-groupe, les transformations n'étant pas inversibles. Le groupe de renormalisation permet de calculer les exposants critiques d'une transition de phase. Il permet aussi de prédire la transition Berezinsky-Kosterlitz-Thouless.
Chromodynamique quantique sur réseauLa chromodynamique quantique sur réseau est une approche non-perturbative de la chromodynamique quantique (QCD) qui se base sur une discrétisation de l'espace-temps. C'est une théorie de jauge sur réseau formulée sur une grille ou réseau de points dans l'espace et le temps. Lorsqu'on fait tendre la taille du réseau vers l'infini et la maille du réseau vers zéro, on retrouve le continuum de la QCD. Il est difficile, voire impossible de trouver des solutions analytiques ou perturbatives de la QCD à basses énergies, de par la nature hautement non-linéaire de la force forte.
QCD matterQuark matter or QCD matter (quantum chromodynamic) refers to any of a number of hypothetical phases of matter whose degrees of freedom include quarks and gluons, of which the prominent example is quark-gluon plasma. Several series of conferences in 2019, 2020, and 2021 were devoted to this topic. Quarks are liberated into quark matter at extremely high temperatures and/or densities, and some of them are still only theoretical as they require conditions so extreme that they cannot be produced in any laboratory, especially not at equilibrium conditions.
ComputationA computation is any type of arithmetic or non-arithmetic calculation that is well-defined. Common examples of computations are mathematical equations and computer algorithms. Mechanical or electronic devices (or, historically, people) that perform computations are known as computers. The study of computation is the field of computability, itself a sub-field of computer science. The notion that mathematical statements should be ‘well-defined’ had been argued by mathematicians since at least the 1600s, but agreement on a suitable definition proved elusive.
Physique au-delà du modèle standardLa physique au-delà du modèle standard se rapporte aux développements théoriques de la physique des particules nécessaires pour expliquer les défaillances du modèle standard, telles que l'origine de la masse, le problème de la violation CP de l'interaction forte, les oscillations des neutrinos, l'asymétrie matière-antimatière, et la nature de la matière noire et de l'énergie noire.
Theory of computationIn theoretical computer science and mathematics, the theory of computation is the branch that deals with what problems can be solved on a model of computation, using an algorithm, how efficiently they can be solved or to what degree (e.g., approximate solutions versus precise ones). The field is divided into three major branches: automata theory and formal languages, computability theory, and computational complexity theory, which are linked by the question: "What are the fundamental capabilities and limitations of computers?".
Model of computationIn computer science, and more specifically in computability theory and computational complexity theory, a model of computation is a model which describes how an output of a mathematical function is computed given an input. A model describes how units of computations, memories, and communications are organized. The computational complexity of an algorithm can be measured given a model of computation. Using a model allows studying the performance of algorithms independently of the variations that are specific to particular implementations and specific technology.