Vol suborbitalvignette|Mercury-Redstone est une fusée permettant uniquement d'effectuer des vols suborbitaux à bord de capsule Mercury. Ici, le décollage de la mission Mercury-Redstone 3, avec l'astronaute Alan Shepard. Un vol suborbital est un vol spatial d'un engin spatial se déplaçant dans l'espace à une vitesse suborbitale, inférieure à la vitesse requise pour qu'il se maintienne en orbite. Le premier vol suborbital est effectué le par l'astronaute Alan Shepard lors de la mission Mercury-Redstone 3.
Cristal liquideUn cristal liquide est un état de la matière qui combine des propriétés d'un liquide ordinaire et celles d'un solide cristallisé. On exprime son état par le terme de « mésophase » ou « état mésomorphe » (du grec « de forme intermédiaire »). La nature de la mésophase diffère suivant la nature et la structure du mésogène, molécule à l'origine de la mésophase, ainsi que des conditions de température, de pression et de concentration. thumb|Rudolf Virchow.
Réseau de BravaisEn cristallographie, un réseau de Bravais est une distribution régulière de points – appelés nœuds – dans l’espace qui représente la périodicité de la distribution atomique d’un cristal. Les nœuds peuvent être imaginés comme les sommets des mailles, c'est-à-dire des portions de l'espace dans lesquelles la structure cristalline peut être divisée. La structure est alors reconstruite par simple translation de la maille.
Hybridation (chimie)En chimie quantique, l'hybridation des orbitales atomiques est le mélange des orbitales atomiques d'un atome appartenant à la même couche électronique de manière à former de nouvelles orbitales qui permettent de mieux décrire qualitativement les liaisons entre atomes. Les orbitales hybrides sont très utiles pour expliquer la forme des orbitales moléculaires. Bien que parfois enseignées avec la théorie VSEPR (Valence Shell Electron Pair Repulsion), liaison de valence et hybridation sont en fait indépendantes du VSEPR.
Brisure spontanée de symétrieEn physique, le terme brisure spontanée de symétrie (BSS) renvoie au fait que, sous certaines conditions, certaines propriétés de la matière ne semblent pas respecter les équations décrivant le mouvement des particules (on dit qu'elles n'ont pas les mêmes symétries). Cette incohérence n'est qu'apparente et signifie simplement que les équations présentent une approximation à améliorer. Cette notion joue un rôle important en physique des particules et en physique de la matière condensée.
Order and disorderIn physics, the terms order and disorder designate the presence or absence of some symmetry or correlation in a many-particle system. In condensed matter physics, systems typically are ordered at low temperatures; upon heating, they undergo one or several phase transitions into less ordered states. Examples for such an order-disorder transition are: the melting of ice: solid-liquid transition, loss of crystalline order; the demagnetization of iron by heating above the Curie temperature: ferromagnetic-paramagnetic transition, loss of magnetic order.
Température de CurieLa température de Curie (ou point de Curie) d'un matériau ferromagnétique ou ferrimagnétique est la température T à laquelle le matériau perd son aimantation permanente. Le matériau devient alors paramagnétique. Ce phénomène a été découvert par le physicien français Pierre Curie en 1895. L’aimantation permanente est causée par l’alignement des moments magnétiques. La susceptibilité magnétique au-dessus de la température de Curie peut alors être calculée à partir de la loi de Curie-Weiss, qui dérive de la loi de Curie.
Orbite sélénocentriquethumb|upright=0.8|Le module Apollo 11 en orbite sélénocentrique. En astronomie, l’orbite sélénocentrique (du grec selênê, « la lune »), ou orbite lunaire, est l'orbite d'un objet autour de la Lune. Certains programmes spatiaux comme Apollo utilisent le terme ambigu d'« orbite lunaire » (voir par exemple Rendez-vous en orbite lunaire), mais l'orbite sélénocentrique est distincte de l'orbite de la Lune autour de la Terre. L'orbite sélénocentrique se réfère à des orbites de divers engins spatiaux, habités ou non, autour de la Lune.
Méthode de Hückelvignette|La forme de la molécule de benzène La méthode de Hückel ou méthode d'orbitales moléculaires de Hückel (HMO pour Hückel molecular orbital method), proposée par Erich Hückel en 1930, est une méthode de CLOA pour déterminer les énergies des orbitales moléculaires des électrons π dans les systèmes d'hydrocarbures conjugués, comme l'éthylène, le benzène ou encore le buta-1,3-diène. Elle constitue la base théorique de la règle de Hückel; la méthode de Hückel étendue développée par Roald Hoffmann est elle la base des règles de Woodward–Hoffmann.
Transition électroniqueLes transitions électroniques décrivent le passage d'un électron d'un niveau d'énergie à un autre. L'électron du niveau d'énergie , excité par un rayonnement électromagnétique passe au niveau d'énergie supérieur . Dans le cas le plus simple d'un atome d'hydrogène (un électron et un proton), l'électron est piégé dans le champ électrique créé par le proton. La mécanique quantique, à l'inverse de la mécanique classique, prévoit que l'électron ne peut alors exister que dans certains états quantiques d'énergie bien déterminés, on parle de quantification d'énergie.