Principes de la thermodynamiquevignette|Entropie d'un corps à 0 K (à gauche) Corps avec une température supérieur à 0 K (à droite) Les principes de la thermodynamique sont les principales lois (principes en fait, car non démontrés) qui régissent la thermodynamique : premier principe de la thermodynamique : principe de conservation de l'énergie ; introduction de la fonction énergie interne, U ; deuxième principe de la thermodynamique : principe d'évolution ; création d'entropie, S ; troisième principe de la thermodynamique ou principe de N
Entropy (statistical thermodynamics)The concept entropy was first developed by German physicist Rudolf Clausius in the mid-nineteenth century as a thermodynamic property that predicts that certain spontaneous processes are irreversible or impossible. In statistical mechanics, entropy is formulated as a statistical property using probability theory. The statistical entropy perspective was introduced in 1870 by Austrian physicist Ludwig Boltzmann, who established a new field of physics that provided the descriptive linkage between the macroscopic observation of nature and the microscopic view based on the rigorous treatment of large ensembles of microstates that constitute thermodynamic systems.
Troisième principe de la thermodynamiquevignette|Walther Hermann Nernst. Le troisième principe de la thermodynamique, appelé aussi principe de Nernst (1906), énonce que : La valeur de l'entropie de tout corps pur dans l'état de cristal parfait est nulle à la température de . Cela permet d'avoir une valeur déterminée de l'entropie (et non pas « à une constante additive près »). Ce principe est irréductiblement lié à l'indiscernabilité quantique des particules identiques. Il a été énoncé par Walther Nernst en 1906, puis Max Planck en 1912.
Configuration entropyIn statistical mechanics, configuration entropy is the portion of a system's entropy that is related to discrete representative positions of its constituent particles. For example, it may refer to the number of ways that atoms or molecules pack together in a mixture, alloy or glass, the number of conformations of a molecule, or the number of spin configurations in a magnet. The name might suggest that it relates to all possible configurations or particle positions of a system, excluding the entropy of their velocity or momentum, but that usage rarely occurs.
Expansion de l'Universdroite|redresse=1.2|vignette|L'expansion de l'Univers imagée par le gonflement d'un gâteau aux raisins. En cosmologie, l'expansion de l'Univers est le nom du phénomène qui voit à grande échelle les objets composant l'Univers (galaxies, amas...) s'éloigner les uns des autres. Cet écartement mutuel, que l'on pourrait prendre pour un mouvement des galaxies dans l'espace, s'interprète en réalité par un gonflement, une dilatation, de l'espace lui-même, les objets célestes étant de ce fait amenés à s'éloigner les uns des autres.
Énergie libreEn thermodynamique, l'énergie libre, appelée aussi énergie libre de Helmholtz ou simplement énergie de Helmholtz, est une fonction d'état extensive dont la variation permet d'obtenir le travail utile susceptible d'être fourni par un système thermodynamique fermé, à température constante, au cours d'une transformation réversible. En français on la représente généralement par ; en anglais on l'appelle énergie libre de Helmholtz et on la représente généralement par .
Micro-état (physique statistique)En physique statistique, un micro-état (appelé aussi configuration microscopique ou bien état microscopique) est la spécification détaillée d'une configuration microscopique d'un système. Le système visite ce micro-état au cours de ses fluctuations thermiques. Par contraste, le macro-état (appelé aussi configuration macroscopique ou encore état macroscopique) d'un système fait référence à ses propriétés macroscopiques, telles que la pression et la température.
Entropy (classical thermodynamics)In classical thermodynamics, entropy () is a property of a thermodynamic system that expresses the direction or outcome of spontaneous changes in the system. The term was introduced by Rudolf Clausius in the mid-19th century to explain the relationship of the internal energy that is available or unavailable for transformations in form of heat and work. Entropy predicts that certain processes are irreversible or impossible, despite not violating the conservation of energy.
Enthalpie libreL’enthalpie libre, appelée aussi énergie libre de Gibbs ou simplement énergie de Gibbs, est une fonction d'état extensive introduite par Willard Gibbs, et généralement notée G. Le changement d'enthalpie libre correspond au travail maximal qui peut être extrait d'un système fermé à température et pression fixes, hors le travail dû à la variation de volume. L'enthalpie libre est reliée à l'enthalpie par la formule (où désigne la température et l'entropie), à l'énergie libre par la relation (où désigne la pression et le volume) et à l'énergie interne par la relation .
Thermodynamic free energyIn thermodynamics, the thermodynamic free energy is one of the state functions of a thermodynamic system (the others being internal energy, enthalpy, entropy, etc.). The change in the free energy is the maximum amount of work that the system can perform in a process at constant temperature, and its sign indicates whether the process is thermodynamically favorable or forbidden. Since free energy usually contains potential energy, it is not absolute but depends on the choice of a zero point.