Groupe finivignette|Un exemple de groupe fini est le groupe des transformations laissant invariant un flocon de neige (par exemple la symétrie par rapport à l'axe horizontal). En mathématiques, un groupe fini est un groupe constitué d'un nombre fini d'éléments. Soit G un groupe. On note en général sa loi multiplicativement et on désigne alors son élément neutre par 1. Toutefois, si G est abélien, la loi est souvent notée additivement et son élément neutre est alors désigné par 0 ; ce n'est cependant pas une règle générale : par exemple, le groupe multiplicatif d'un corps commutatif est noté multiplicativement, bien qu'il soit abélien.
Morphisme de type finiEn géométrie algébrique, un morphisme de type fini peut être pensé comme une famille de variétés algébriques paramétrée par un schéma de base. C'est un des types de morphismes les plus couramment étudiés. Soit un morphisme de schémas. On dit que est de type fini si pour tout ouvert affine de , est quasi-compact (i.e. réunion finie d'ouverts affines) et que pour tout ouvert affine contenu dans , le morphisme canonique est de type fini.
Lagrangian systemIn mathematics, a Lagrangian system is a pair (Y, L), consisting of a smooth fiber bundle Y → X and a Lagrangian density L, which yields the Euler–Lagrange differential operator acting on sections of Y → X. In classical mechanics, many dynamical systems are Lagrangian systems. The configuration space of such a Lagrangian system is a fiber bundle Q → R over the time axis R. In particular, Q = R × M if a reference frame is fixed. In classical field theory, all field systems are the Lagrangian ones.