Optimisation multiobjectifL'optimisation multiobjectif (appelée aussi Programmation multi-objective ou optimisation multi-critère) est une branche de l'optimisation mathématique traitant spécifiquement des problèmes d'optimisation ayant plusieurs fonctions objectifs. Elle se distingue de l'optimisation multidisciplinaire par le fait que les objectifs à optimiser portent ici sur un seul problème. Les problèmes multiobjectifs ont un intérêt grandissant dans l'industrie où les responsables sont contraints de tenter d'optimiser des objectifs contradictoires.
Codage entropiqueLe codage entropique (ou codage statistique à longueur variable) est une méthode de codage de source sans pertes, dont le but est de transformer la représentation d'une source de données pour sa compression ou sa transmission sur un canal de communication. Les principaux types de codage entropique sont le codage de Huffman et le codage arithmétique. Le codage entropique utilise des statistiques sur la source pour construire un code, c'est-à-dire une application qui associe à une partie de la source un mot de code, dont la longueur dépend des propriétés statistiques de la source.
Auto-vectorisationL'auto-vectorisation est une technique de compilation de langage de programmation, permettant d'adapter automatiquement des boucles de fonctions traitant des vecteurs, ou, plus généralement, des matrices, à un processeur vectoriel ou bien un SIMD. On appelle plus généralement, le fait d'adapter des traitements à des processeurs vectoriels, de façon manuelle ou automatique, une vectorisation. Le compilateur Gnu GCC utilise des techniques d'auto-vectorisation basées en 2011 sur le framework tree-ssa pour la majorité des SIMD (3DNow!, SSE (et SSE2, SSE3), ARM NEON et l'équivalent d'ARM pour l'embarqué, MVE.
Matrice génératriceUne matrice génératrice est un concept de théorie des codes utilisé dans le cas des codes linéaires. Elle correspond à la matrice de l'application linéaire de E l'espace vectoriel des messages à communiquer dans F, l'espace vectoriel contenant les codes transmis. La notion de matrice génératrice possède à la fois un intérêt théorique dans le cadre de l'étude des codes correcteurs, par exemple pour définir la notion de code systématique, et un intérêt pratique pour une implémentation efficace.