Pulse-density modulationPulse-density modulation, or PDM, is a form of modulation used to represent an analog signal with a binary signal. In a PDM signal, specific amplitude values are not encoded into codewords of pulses of different weight as they would be in pulse-code modulation (PCM); rather, the relative density of the pulses corresponds to the analog signal's amplitude. The output of a 1-bit DAC is the same as the PDM encoding of the signal. In a pulse-density modulation bitstream, a 1 corresponds to a pulse of positive polarity (+A), and a 0 corresponds to a pulse of negative polarity (−A).
Arbre enracinéEn théorie des graphes, un arbre enraciné ou une arborescence est un graphe acyclique orienté possédant une unique racine, et tel que tous les nœuds sauf la racine ont un unique parent. En informatique, c'est également une structure de données récursive utilisée pour représenter ce type de graphes. Dans un arbre, on distingue deux catégories d'éléments : les feuilles (ou nœuds externes), éléments ne possédant pas de fils dans l'arbre ; les nœuds internes, éléments possédant des fils (sous-branches).
Interferometric visibilityThe interferometric visibility (also known as interference visibility and fringe visibility, or just visibility when in context) is a measure of the contrast of interference in any system subject to wave superposition. Examples include as optics, quantum mechanics, water waves, sound waves, or electrical signals. Visibility is defined as the ratio of the amplitude of the interference pattern to the sum of the powers of the individual waves. The interferometric visibility gives a practical way to measure the coherence of two waves (or one wave with itself).
Delaunay refinementIn mesh generation, Delaunay refinements are algorithms for mesh generation based on the principle of adding Steiner points to the geometry of an input to be meshed, in a way that causes the Delaunay triangulation or constrained Delaunay triangulation of the augmented input to meet the quality requirements of the meshing application. Delaunay refinement methods include methods by Chew and by Ruppert. Chew's second algorithm takes a piecewise linear system (PLS) and returns a constrained Delaunay triangulation of only quality triangles where quality is defined by the minimum angle in a triangle.
Triangulation (géométrie)En géométrie, une triangulation est une partition d'un objet en un ensemble de simplexes. En particulier dans le plan, une triangulation est composée de triangles. Une triangulation est un complexe simplicial. Une triangulation d'un ensemble est une partition de en simplexes de dimension (n+1) telle que : l'intersection de deux simplexes est soit une face commune aux deux simplexes, soit vide tout ensemble borné de coupe un nombre fini de simplexes de T l'union des simplexes correspond à Un problème de géométrie est de trouver rapidement une triangulation d'un polygone, c'est-à-dire un ensemble de triangles disjoints dont l'union recouvre le polygone.
Matrice de VandermondeEn algèbre linéaire, une matrice de Vandermonde est une matrice avec une progression géométrique dans chaque ligne. Elle tient son nom du mathématicien français Alexandre-Théophile Vandermonde. De façon matricielle, elle se présente ainsi : Autrement dit, pour tous i et j, le coefficient en ligne i et colonne j est Remarque. Certains auteurs utilisent la transposée de la matrice ci-dessus. On considère une matrice V de Vandermonde carrée (). Elle est inversible si et seulement si les sont deux à deux distincts.
Triangulation d'un polygoneEn géométrie algorithmique, la triangulation d'un polygone consiste à décomposer ce polygone en un ensemble (fini) de triangles. Une triangulation d'un polygone P est une partition de P en un ensemble de triangles qui ne se recouvrent pas, et dont l'union est P. Dans le cas le plus restrictif, on impose que les sommets des triangles ne soient que les sommets de P. Dans un cadre plus permissif, on peut rajouter des sommets à l'intérieur de P ou sur la frontière pour servir de sommets aux triangles.