In linear algebra, a Vandermonde matrix, named after Alexandre-Théophile Vandermonde, is a matrix with the terms of a geometric progression in each row: an matrix
with entries , the jth power of the number , for all zero-based indices and . Most authors define the Vandermonde matrix as the transpose of the above matrix.
The determinant of a square Vandermonde matrix (when ) is called a Vandermonde determinant or Vandermonde polynomial. Its value is:
This is non-zero if and only if all are distinct (no two are equal), making the Vandermonde matrix invertible.
The polynomial interpolation problem is to find a polynomial which satisfies for given data points . This problem can be reformulated in terms of linear algebra by means of the Vandermonde matrix, as follows. computes the values of at the points via a matrix multiplication , where is the vector of coefficients and is the vector of values (both written as column vectors):
If and are distinct, then V is a square matrix with non-zero determinant, i.e. an invertible matrix. Thus, given V and y, one can find the required by solving for its coefficients in the equation : . That is, the map from coefficients to values of polynomials is a bijective linear mapping with matrix V, and the interpolation problem has a unique solution. This result is called the unisolvence theorem, and is a special case of the Chinese remainder theorem for polynomials.
In statistics, the equation means that the Vandermonde matrix is the design matrix of polynomial regression.
In numerical analysis, solving the equation naïvely by Gaussian elimination results in an algorithm with time complexity O(n3). Exploiting the structure of the Vandermonde matrix, one can use Newton's divided differences method (or the Lagrange interpolation formula) to solve the equation in O(n2) time, which also gives the UL factorization of . The resulting algorithm produces extremely accurate solutions, even if is ill-conditioned. (See polynomial interpolation.)
The Vandermonde determinant is used in the representation theory of the symmetric group.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
En analyse numérique, les polynômes de Lagrange, du nom de Joseph-Louis Lagrange, permettent d'interpoler une série de points par un polynôme qui passe exactement par ces points appelés aussi nœuds. Cette technique d'interpolation polynomiale a été découverte par Edward Waring en 1779 et redécouverte plus tard par Leonhard Euler en 1783. C'est un cas particulier du théorème des restes chinois. On se donne n + 1 points (avec les xi distincts deux à deux).
En analyse mathématique, le wronskien, nommé ainsi en l'honneur de Josef Hoëné-Wronski, est le déterminant d'une famille de solutions d'un système différentiel linéaire homogène y' = ay. À l'aide du wronskien, il est possible de déterminer si cette famille constitue une base de l'espace des solutions. En outre, même sans aucune information sur les solutions, l'équation d'évolution du wronskien est connue. Ceci donne une information quantitative précieuse et offre même une stratégie de résolution pour certaines équations différentielles.
Explore les systèmes d'équations non linéaires et d'interpolation polynomiale, y compris la méthode de Newton et la construction de la matrice de Vandermonde.
We present TimeEvolver, a program for computing time evolution in a generic quantum system. It relies on well-known Krylov subspace techniques to tackle the problem of multiplying the exponential of a large sparse matrix iH, where His the Hamiltonian, with ...
ELSEVIER2022
,
Directors at firms with well-connected CEOs are more likely to obtain directorships at firms that are connected to the CEOs. Recommended directors do not become beholden to the CEO. Reciprocity is an important determinant of recommendations because CEOs ar ...
The choice of the shape parameter highly effects the behaviour of radial basis function (RBF) approximations, as it needs to be selected to balance between the ill-conditioning of the interpolation matrix and high accuracy. In this paper, we demonstrate ho ...