Computational complexityIn computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.
Théorie de la complexité (informatique théorique)vignette|Quelques classes de complexité étudiées dans le domaine de la théorie de la complexité. Par exemple, P est la classe des problèmes décidés en temps polynomial par une machine de Turing déterministe. La théorie de la complexité est le domaine des mathématiques, et plus précisément de l'informatique théorique, qui étudie formellement le temps de calcul, l'espace mémoire (et plus marginalement la taille d'un circuit, le nombre de processeurs, l'énergie consommée ...) requis par un algorithme pour résoudre un problème algorithmique.
Détection du quorumvignette| Diagramme montrant les étapes de détection du quorum chez une bactérie Gram négatif. La détection du quorum, ou en, est la capacité d'un micro-organisme (bactérie, archée, microchampignon, virus) à détecter et à réagir à la densité de population de ce microbe par des mécanismes de régulation génétique. À haute densité de population, la concentration de signaux moléculaires présents dans l'environnement sont perçus par les micro-organismes.
Complexité de la multiplication de matricesEn informatique théorique, la complexité de la multiplication de matrices est le nombre d'opérations requises pour l'opération de produit matriciel. Les algorithmes de multiplication de matrices constituent un sujet central dans les algorithmes théoriques et numériques en algèbre linéaire numérique et en optimisation, donc déterminer la complexité en temps du produit est d'une importance pratique. L'application directe de la définition mathématique de la multiplication de matrices donne un algorithme qui nécessite opérations sur le corps de base pour multiplier deux matrices d'ordre .
Complexité de la communicationLa complexité de la communication ou complexité de communication est une notion étudiée en informatique théorique. Le dispositif abstrait classique est le suivant : Alice et Bob ont chacun un message, et ils veulent calculer un nouveau message à partir de leurs messages, en se transmettant un minimum d'information. Par exemple, Alice et Bob reçoivent un mot chacun, et ils doivent décider s'ils ont reçu le même mot ; ils peuvent bien sûr s'envoyer leur mot l'un à l'autre et comparer, mais la question est de minimiser le nombre de messages.
Taux de défaillanceLe taux de défaillance, ou taux de panne, est une expression relative à la fiabilité des équipements et de chacun de leurs composants. Son symbole est la lettre grecque λ (lambda). Le taux de défaillance d'un équipement à l'instant t est la limite, si elle existe, du quotient de la probabilité conditionnelle que l'instant T de la (première) défaillance de cet équipement soit compris dans l'intervalle de temps donné [t, t + Δt] par la durée Δt de cet intervalle, lorsque Δt tend vers zéro, en supposant que l'entité soit disponible au début de l'intervalle de temps.
Problème du consensusLe problème du consensus est un problème fondamental en théorie du calcul distribué. Il consiste pour un ensemble de machines à se mettre d'accord sur une valeur ou, par extension, sur une séquence de valeurs. La résolution du consensus est primordiale pour la coordination des systèmes distribués. Elle permet notamment la consistance des systèmes répliqués malgré la défaillance d'une partie de leurs composants.
Algorithmethumb|Algorithme de découpe d'un polygone quelconque en triangles (triangulation). Un algorithme est une suite finie et non ambiguë d'instructions et d’opérations permettant de résoudre une classe de problèmes. Le domaine qui étudie les algorithmes est appelé l'algorithmique. On retrouve aujourd'hui des algorithmes dans de nombreuses applications telles que le fonctionnement des ordinateurs, la cryptographie, le routage d'informations, la planification et l'utilisation optimale des ressources, le , le traitement de textes, la bio-informatique L' algorithme peut être mis en forme de façon graphique dans un algorigramme ou organigramme de programmation.
Best, worst and average caseIn computer science, best, worst, and average cases of a given algorithm express what the resource usage is at least, at most and on average, respectively. Usually the resource being considered is running time, i.e. time complexity, but could also be memory or some other resource. Best case is the function which performs the minimum number of steps on input data of n elements. Worst case is the function which performs the maximum number of steps on input data of size n.
Informatique théoriquevignette|Une représentation artistique d'une machine de Turing. Les machines de Turing sont un modèle de calcul. L'informatique théorique est l'étude des fondements logiques et mathématiques de l'informatique. C'est une branche de la science informatique et la science formelle. Plus généralement, le terme est utilisé pour désigner des domaines ou sous-domaines de recherche centrés sur des vérités universelles (axiomes) en rapport avec l'informatique.