AnalysisAnalysis (: analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (384–322 B.C.), though analysis as a formal concept is a relatively recent development. The word comes from the Ancient Greek ἀνάλυσις (analysis, "a breaking-up" or "an untying;" from ana- "up, throughout" and lysis "a loosening"). From it also comes the word's plural, analyses.
Quantification existentielleEn mathématiques et en logique, plus précisément en calcul des prédicats, l'existence d'un objet x satisfaisant une certaine propriété, ou prédicat, P se note ∃x P(x), où le symbole mathématique ∃, lu « il existe », est le quantificateur existentiel, et P(x) le fait pour l'objet x d'avoir la propriété P. L'objet x a la propriété P(x) s'exprime par une formule du calcul des prédicats.
Goto (informatique)L’instruction goto (littéralement va à) est une instruction présente dans de nombreux langages de programmation. Elle est utilisée pour réaliser des sauts inconditionnels dans un programme, changeant ainsi le flot de contrôle naturel du programme qui consiste à aller exécuter l'instruction suivante. L’exécution est alors envoyée à une autre instruction repérée par une étiquette ou label, qui est soit un numéro de ligne, soit une étiquette déclarée, selon le langage.
Instanciation universelleEn logique, l'instanciation universelle (également appelée Dictum de omni) est une règle d'inférence qui permet, à partir d'une vérité sur l'ensemble des membres d'une classe d'entités, d'inférer une vérité sur une entité particulière de cette classe. Elle est généralement considérée comme une règle de quantification pour le quantificateur universel, mais elle peut également être énoncée en tant qu'axiome. C'est l'un des principes de bases de la théorie de la quantification. Exemple : « Tous les hommes sont mortels.
Élimination des quantificateursEn logique mathématique, ou plus précisément en théorie des modèles, l'élimination des quantificateurs est l'action consistant à trouver une formule sans quantificateur équivalente à une formule donnée contenant éventuellement des quantificateurs dans la théorie considérée d'un certain langage.
Algèbre universelleL'algèbre universelle est la branche de l'algèbre qui a pour but de traiter de manière générale et simultanée les différentes structures algébriques : groupes, monoïdes, anneaux, espaces vectoriels, etc. Elle permet de définir de manière uniforme les morphismes, les sous-structures (sous-groupes, sous-monoïdes, sous-anneaux, sous-espaces vectoriels, etc.), les quotients, les produits et les objets libres pour ces structures.
Test (informatique)vignette|Une programmeuse écrivant du code Java avec JUnit. En informatique, un test désigne une procédure de vérification partielle d'un système. Son objectif principal est d'identifier un nombre maximal de comportements problématiques du logiciel. Il permet ainsi, dès lors que les problèmes identifiés seront corrigés, d'en augmenter la qualité. D'une manière plus générale, le test désigne toutes les activités qui consistent à rechercher des informations quant à la qualité du système afin de permettre la prise de décisions.
Programmation impérativeEn informatique, la programmation impérative est un paradigme de programmation qui décrit les opérations en séquences d'instructions exécutées par l'ordinateur pour modifier l'état du programme. Ce type de programmation est le plus répandu parmi l'ensemble des langages de programmation existants, et se différencie de la programmation déclarative (dont la programmation logique ou encore la programmation fonctionnelle sont des sous-ensembles).
Analyse (mathématiques)L'analyse (du grec , délier, examiner en détail, résoudre) a pour point de départ la formulation rigoureuse du calcul infinitésimal. C'est la branche des mathématiques qui traite explicitement de la notion de limite, que ce soit la limite d'une suite ou la limite d'une fonction. Elle inclut également des notions comme la continuité, la dérivation et l'intégration. Ces notions sont étudiées dans le contexte des nombres réels ou des nombres complexes.
GénéricitéEn programmation, la généricité (ou programmation générique), consiste à définir des algorithmes identiques opérant sur des données de types différents. On définit de cette façon des procédures ou des types entiers génériques. On pourrait ainsi programmer une pile, ou une procédure qui prend l'élément supérieur de la pile, indépendamment du type de données contenues. C'est donc une forme de polymorphisme, le « polymorphisme de type » dit aussi « paramétrage de type » : en effet, le type de donnée général (abstrait) apparaît comme un paramètre des algorithmes définis, avec la particularité que ce paramètre-là est un type.