False discovery rateIn statistics, the false discovery rate (FDR) is a method of conceptualizing the rate of type I errors in null hypothesis testing when conducting multiple comparisons. FDR-controlling procedures are designed to control the FDR, which is the expected proportion of "discoveries" (rejected null hypotheses) that are false (incorrect rejections of the null). Equivalently, the FDR is the expected ratio of the number of false positive classifications (false discoveries) to the total number of positive classifications (rejections of the null).
Multiple comparisons problemIn statistics, the multiple comparisons, multiplicity or multiple testing problem occurs when one considers a set of statistical inferences simultaneously or infers a subset of parameters selected based on the observed values. The more inferences are made, the more likely erroneous inferences become. Several statistical techniques have been developed to address that problem, typically by requiring a stricter significance threshold for individual comparisons, so as to compensate for the number of inferences being made.
Family-wise error rateIn statistics, family-wise error rate (FWER) is the probability of making one or more false discoveries, or type I errors when performing multiple hypotheses tests. John Tukey developed in 1953 the concept of a familywise error rate as the probability of making a Type I error among a specified group, or "family," of tests. Ryan (1959) proposed the related concept of an experimentwise error rate, which is the probability of making a Type I error in a given experiment.
False positive rateIn statistics, when performing multiple comparisons, a false positive ratio (also known as fall-out or false alarm ratio) is the probability of falsely rejecting the null hypothesis for a particular test. The false positive rate is calculated as the ratio between the number of negative events wrongly categorized as positive (false positives) and the total number of actual negative events (regardless of classification). The false positive rate (or "false alarm rate") usually refers to the expectancy of the false positive ratio.
False coverage rateIn statistics, a false coverage rate (FCR) is the average rate of false coverage, i.e. not covering the true parameters, among the selected intervals. The FCR gives a simultaneous coverage at a (1 − α)×100% level for all of the parameters considered in the problem. The FCR has a strong connection to the false discovery rate (FDR). Both methods address the problem of multiple comparisons, FCR from confidence intervals (CIs) and FDR from P-value's point of view. FCR was needed because of dangers caused by selective inference.
Test d'intégrationDans le monde du développement informatique, L'objectif de chaque phase de test est de détecter les erreurs qui n'ont pas pu être détectées lors de la précédente phase. Pour cela, le test d’intégration a pour cible de détecter les erreurs non détectables par le test unitaire. Le test d’intégration permet également de vérifier l'aspect fonctionnel, les performances et la fiabilité du logiciel. L'intégration fait appel en général à un système de gestion de versions, et éventuellement à des programmes d'installation.
Test unitaireEn programmation informatique, le test unitaire (ou « T.U. », ou « U.T. » en anglais) est une procédure permettant de vérifier le bon fonctionnement d'une partie précise d'un logiciel ou d'une portion d'un programme (appelée « unité » ou « module »). Dans les applications non critiques, l'écriture des tests unitaires a longtemps été considérée comme une tâche secondaire. Cependant, les méthodes Extreme programming (XP) ou Test Driven Development (TDD) ont remis les tests unitaires, appelés « tests du programmeur », au centre de l'activité de programmation.
Test de validationUn test de validation est un type de test informatique qui permet de vérifier si toutes les exigences client, décrites dans le document de spécification du logiciel, sont respectées. Les tests de validation se décomposent généralement en plusieurs phases : Validation fonctionnelle : les tests fonctionnels assurent que les différents modules ou composants implémentent correctement les exigences client. Ces tests peuvent être de type valide, invalide, inopportuns, etc.
Tests systèmeLes tests système de logiciel ou de matériel réfèrent à un processus de test d'un système intégré afin d'évaluer sa conformité aux exigences spécifiées. Les tests système appartiennent à la classe des tests de type boîte noire, et en tant que tels, ne devraient exiger aucune connaissance de la conception interne du code ou de la logique. En règle générale, les tests système prennent comme entrée tous les composants logiciels « intégrés » (ayant réussi les tests d'intégration) mais aussi le système logiciel lui-même intégré à n'importe quel système matériel compatible.
False positives and false negativesA false positive is an error in binary classification in which a test result incorrectly indicates the presence of a condition (such as a disease when the disease is not present), while a false negative is the opposite error, where the test result incorrectly indicates the absence of a condition when it is actually present. These are the two kinds of errors in a binary test, in contrast to the two kinds of correct result (a and a ).