In statistics, the multiple comparisons, multiplicity or multiple testing problem occurs when one considers a set of statistical inferences simultaneously or infers a subset of parameters selected based on the observed values.
The more inferences are made, the more likely erroneous inferences become. Several statistical techniques have been developed to address that problem, typically by requiring a stricter significance threshold for individual comparisons, so as to compensate for the number of inferences being made.
The problem of multiple comparisons received increased attention in the 1950s with the work of statisticians such as Tukey and Scheffé. Over the ensuing decades, many procedures were developed to address the problem. In 1996, the first international conference on multiple comparison procedures took place in Tel Aviv.
Multiple comparisons arise when a statistical analysis involves multiple simultaneous statistical tests, each of which has a potential to produce a "discovery". A stated confidence level generally applies only to each test considered individually, but often it is desirable to have a confidence level for the whole family of simultaneous tests. Failure to compensate for multiple comparisons can have important real-world consequences, as illustrated by the following examples:
Suppose the treatment is a new way of teaching writing to students, and the control is the standard way of teaching writing. Students in the two groups can be compared in terms of grammar, spelling, organization, content, and so on. As more attributes are compared, it becomes increasingly likely that the treatment and control groups will appear to differ on at least one attribute due to random sampling error alone.
Suppose we consider the efficacy of a drug in terms of the reduction of any one of a number of disease symptoms. As more symptoms are considered, it becomes increasingly likely that the drug will appear to be an improvement over existing drugs in terms of at least one symptom.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course provides an introduction to experimental statistics, including use of population statistics to characterize experimental results, use of comparison statistics and hypothesis testing to eva
Inference from the particular to the general based on probability models is central to the statistical method. This course gives a graduate-level account of the main ideas of statistical inference.
This course is neither an introduction to the mathematics of statistics nor an introduction to a statistics program such as R. The aim of the course is to understand statistics from its experimental d
Explore les tests d'hypothèses statistiques, les types d'erreurs, le seuil et les comparaisons multiples dans GLM.
Couvre les problèmes d'inférence liés au Spin Glass Game et les défis de faire des erreurs avec preb P.
Déplacez-vous dans les tests d'hypothèses, couvrant les statistiques d'essais, les régions critiques, les fonctions de puissance, les valeurs p, les tests multiples et les statistiques non paramétriques.
vignette|Exemple de Data dredging. Le data dredging (littéralement le dragage de données mais mieux traduit comme étant du triturage de données) est une technique statistique qui . Une des formes du data dredging est de partir de données ayant un grand nombre de variables et un grand nombre de résultats, et de choisir les associations qui sont « statistiquement significatives », au sens de la valeur p (on parle aussi de p-hacking).
En statistique, le test des étendues de Tukey aussi appelé test de Tukey, méthode de Tukey, méthode de Tukey-Kramer ou test DSH (différence significative honnête) de Tukey, nommé d'après John Tukey, est un test statistique permettant d'effectuer une en une seule étape. Il peut être utilisé dans le cadre d'une ANOVA ou bien sur des données brutes pour évaluer par exemple si des moyennes sont significativement différentes l'une de l'autre.
In statistics, Scheffé's method, named after the American statistician Henry Scheffé, is a method for adjusting significance levels in a linear regression analysis to account for multiple comparisons. It is particularly useful in analysis of variance (a special case of regression analysis), and in constructing simultaneous confidence bands for regressions involving basis functions. Scheffé's method is a single-step multiple comparison procedure which applies to the set of estimates of all possible contrasts among the factor level means, not just the pairwise differences considered by the Tukey–Kramer method.
Information theory has allowed us to determine the fundamental limit of various communication and algorithmic problems, e.g., the channel coding problem, the compression problem, and the hypothesis testing problem. In this work, we revisit the assumptions ...
Psychotic symptoms are among the most debilitating and challenging presentations of severe psychiatric diseases, such as schizophrenia, schizoaffective, and bipolar disorder. A pathophysiological understanding of intrinsic brain activity underlying psychos ...
Frontiers Media Sa2024
Conversational tutoring systems (CTSs) offer a promising avenue for individualized learning support, especially in domains like persuasive writing. Although these systems have the potential to enhance the learning process, the specific role of learner cont ...