NeurotrophineNeurotrophins are a family of proteins that induce the survival, development, and function of neurons. They belong to a class of growth factors, secreted proteins that can signal particular cells to survive, differentiate, or grow. Growth factors such as neurotrophins that promote the survival of neurons are known as neurotrophic factors. Neurotrophic factors are secreted by target tissue and act by preventing the associated neuron from initiating programmed cell death – allowing the neurons to survive.
Germline mutationA germline mutation, or germinal mutation, is any detectable variation within germ cells (cells that, when fully developed, become sperm and ova). Mutations in these cells are the only mutations that can be passed on to offspring, when either a mutated sperm or oocyte come together to form a zygote. After this fertilization event occurs, germ cells divide rapidly to produce all of the cells in the body, causing this mutation to be present in every somatic and germline cell in the offspring; this is also known as a constitutional mutation.
Immediate early geneImmediate early genes (IEGs) are genes which are activated transiently and rapidly in response to a wide variety of cellular stimuli. They represent a standing response mechanism that is activated at the transcription level in the first round of response to stimuli, before any new proteins are synthesized. IEGs are distinct from "late response" genes, which can only be activated later, following the synthesis of early response gene products. Thus IEGs have been called the "gateway to the genomic response".
Neuroimmune systemThe neuroimmune system is a system of structures and processes involving the biochemical and electrophysiological interactions between the nervous system and immune system which protect neurons from pathogens. It serves to protect neurons against disease by maintaining selectively permeable barriers (e.g., the blood–brain barrier and blood–cerebrospinal fluid barrier), mediating neuroinflammation and wound healing in damaged neurons, and mobilizing host defenses against pathogens.
Polyhedral combinatoricsPolyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes. Research in polyhedral combinatorics falls into two distinct areas. Mathematicians in this area study the combinatorics of polytopes; for instance, they seek inequalities that describe the relations between the numbers of vertices, edges, and faces of higher dimensions in arbitrary polytopes or in certain important subclasses of polytopes, and study other combinatorial properties of polytopes such as their connectivity and diameter (number of steps needed to reach any vertex from any other vertex).
Birkhoff polytopeThe Birkhoff polytope Bn (also called the assignment polytope, the polytope of doubly stochastic matrices, or the perfect matching polytope of the complete bipartite graph ) is the convex polytope in RN (where N = n2) whose points are the doubly stochastic matrices, i.e., the n × n matrices whose entries are non-negative real numbers and whose rows and columns each add up to 1. It is named after Garrett Birkhoff. The Birkhoff polytope has n! vertices, one for each permutation on n items.
CiclosporineLa ciclosporine (selon la dénomination commune internationale, mais aussi appelée cyclosporine) est un agent immunosuppresseur dont l'utilisation thérapeutique, dès le début des années 1980, a permis un essor considérable du domaine de la transplantation d'organes en prévenant le rejet aigu des allogreffes. Aujourd'hui encore largement employée en transplantation (peau, cœur, rein, poumons, pancréas, moelle osseuse, intestin grêle), quoique concurrencée par des molécules plus récentes, la ciclosporine a également des applications en dermatologie et dans le traitement de certaines maladies auto-immunes.