Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.
This paper brings additional light on the previously proposed two-step tracking algorithm for E1 CBOC tracking. More specifically, assessment of the different DLL and PLL tracking loop architectures are analyzed, taking into consideration coherent and non-coherent data and pilot channel combining schemes and increasing integration time beyond data bit period, which is 4 ms for E1 CBOC signal. Our assessment is based on implementing the different tracking loop architectures in a software receiver fed with RF samples generated with a full constellation Galileo E1 simulator. The results are obtained for integration times equal and above the data bit period (i.e, from 4 to 20 ms) and for high to low C/No (i.e., from 41 down to 26 dB-Hz). Also, the influence of the secondary code removal on the tracking loops is shown using a specially conceived algorithm to acquire it. Robustness of the tracking loops is tested under low C/N0, in order to investigate the channel combining strategies. Four different combining cases are tested. Finally, performance analyses are presented and the results are discussed.
Andreas Peter Burg, Joachim Tobias Tapparel, Mathieu Pierre Xhonneux
, , , ,